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CHAPTER 1

COMPACT STARS

In this chapter we will briefly introduce compact stars (White Dwarves and Neutron Stars) from an historical point
of view. NSs show a vast and diverse phenomenology, ranging from the canonical PSRs, to extreme objects like
Magnetars, from old isolated NSs to accreating systems. Here we present a brief review of the various classes
in which they have been divided during the years. The divisions are mostly based on their observational prop-
erties, but the distinctions often hide a much more profound difference in the mechanisms resposible for their
emission/evolution. At the moment a unifying picture able to relate all of them is still lacking.

1.1 History

On the 31st of January 1783 the british astronomer William Herschel discovered two companions (B/C) of the
main sequence star 40 Eridani A. The 31st of January 1862 Alvan Graham Clark observed a previously unseen star
close to Sirius, later identified as the companion predicted by Friedrich Bessel (who had observed the oscillatory
motion of Sirius A). In 1910, Henry Norris Russell, Edward Charles Pickering and Williamina Fleming discovered
that, despite being a dim star, 40 Eridani B was of spectral type A, or white. Five years later in 1915, Walter Adams
announced that he had found the spectrum of Sirius B to be similar to that of Sirius A (spectral type A). In 1917,
Adriaan van Maanen discovered the Van Maanen’s Star, an isolated star, of spectral type F, but much fainter than
similar main sequence stars.

The radius of Sirius B inferred from its luminosity and the mass derived from the binary dynamics, suggested
this object to have a density 105 times higher than that of Sirius A. The high mass density was confirmed in 1925
by the american astronomer Walter Adams when he measured the gravitational redshift of Sirius B and found a
value of 21 km s−1. Willem Luyten appears to have been the first to use the term White Dwarf (WD) when he
examined this class of stars in 1922.

In 1926, the astrophysicist Ralph Fowler used the new theory of quantum mechanics to show that these stars
are supported by an electron gas in a degenerate state. The Fermi gas model was then used by the physicist E.
C. Stoner in 1929 to calculate the relationship among the mass, radius, and density of WDs, assuming them to
be homogeneous spheres. In a series of papers published between 1931 and 1935, Subrahmanyan Chandrasekhar
solved the hydrostatic equation together with the non-relativistic Fermi gas equation of state, and also treated the
case of a relativistic Fermi gas, showing the existence of a mass limit.

In 1952 the astrophysicist Leon Mestel demonstrated that the energy emitted by a WD is the surviving heat from a
prior period of nuclear fusion. He showed that nuclear burning no longer occurs within a WD. It was recognized
that WDs were the remnants of main sequence stars, in particular the degenerate remnants of their cores, that
become exposed during the phase of Planetary Nebula.
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2 COMPACT STARS

In 1934, Walter Baade and Fritz Zwicky proposed the existence of the Neutron Star (NS), only a year after the
discovery of the neutron by Sir James Chadwick. In seeking an explanation for the origin of a supernova, they ten-
tatively proposed that in supernova explosions ordinary stars are turned into stars that consist of extremely closely
packed neutrons that they called NSs. Baade and Zwicky correctly proposed at that time that the release of the
gravitational binding energy of the NS powers the supernova.

The first tentative calculations of the mass radius relationship for NSs was done by Zwicky in 1938 using a simple
energy argument applied to a system behaving like a large nucleus. The first correct model of NSs in General Rela-
tivity (GR) was put forward in 1939 by R.C. Tolman, J.R. Oppenheimer and G.M. Volkoff (TOV), assuming it to be
formed by free degenerate neutrons. As found by Chandrasekhar, a maximum mass was derived also for Neutron
Stars, but found to be smaller than the limit for WDs. The small radii, making these objects virtually undetectable,
and the lower maximum mass, creating an evolutionary gap (NSs could not originate from collapsing WDs being
their maximum mass smaller) led to a stalemate in their study. Only in 1959 it was recognized by Cameron that
neutrons inside a NS were too close to neglect their mutual strong attraction, and could not be described as a free
fermion gas. New models were computed leading to a maximum mass higher than the Chandrasekhar limit for
WDs.

However, little work was done on them until November 1967, when Franco Pacini pointed out that if the NSs
were spinning and had large magnetic fields, then electromagnetic waves would be emitted. Unbeknown to him in
1967, Jocelyn Bell and Antony Hewish discovered regular radio pulses from CP 1919. This pulsar (PSR) was later
interpreted as an isolated, rotating neutron star.

In 1971, Riccardo Giacconi, and collaborators discovered a 4.8 second pulsations in an X-ray source in the con-
stellation Centaurus, Cen X-3. They interpreted this as resulting from a rotating hot NS. The energy source was
supposed to be gravitational and results from a rain of gas falling onto the surface of the NS from a companion star.

Since then more than 2000 NSs have been discovered. The vast majority of them are Pulsars, but other classes
are present with tens of members, including Magnetars (NSs with strong magnetic field whose emission is likely
powered by the magnetic field decay), and Thermal Isolated Neutron Stars (NS with a weak magnetic field an
purely thermal spectrum).

1.1.1 Pulsar History

The first PSR was observed on November 28, 1967, by Jocelyn Bell Burnell and Antony Hewish. They observed
radio pulses with a well defined period of 1.33 seconds that was shown, in the following days, to originate from
the same location on the sky. The source was also keeping to sidereal time. Since the source of the pulses followed
sidereal time, it could not be man-made radio frequency interference. In 1968 a PSR was discovered at the centre
of the Crab Nebula, the remnant of a Supernova (SN) exploded in 1054 AD. This discovery confirmed an original
idea by Franco Pacini, in 1967, that a rotating neutron star with a magnetic field would emit radiation, and that such
energy could be pumped into a supernova remnant (SNR). Indeed, in 1968, Thomas Gold independently argued
that this model could explain the pulsed radiation observed by Bell Burnell and Hewish. The discovery of the Crab
pulsar, confirmed also the hypothesis of Walter Baade and Fritz Zwicky, in 1934, that a NS could be born in a SN.

Today the association of PSRs/NSs with SNe is well established. All young PSRs (age < 104 yr) are found
inside SNRs. There is an estimated number of 104 PSRs in the Galaxy (of which only ∼ 2000 are observed) with
typical ages ∼ 106 yr, setting a typical birth rate ∼ 1 every 100 yr, similar to the Core-Collapse Supernova rate
(1 every 30 yr). SNe are the ending phase in the life of a massive (M > 9M�) star. Given the mass luminosity
relation, L ∝ M3, its typical lifetime is only a few tens of million years, much smaller than the galactic orbital
period (∼ 3 × 108 yr). SNe are supposed to explode mainly in the spiral harms of the Galaxy, where the star
forming regions are located. PSRs are also found mostly in spiral harms, Fig 1.1.

In 1982, Don Backer led a group which discovered a PSR with a rotation period of just 1.6 milliseconds, the
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first millisecond pulsar. Millisecond pulsars have since been detected also in the radio, X-ray, and for a substantial
fraction in gamma-ray. Millisecond pulsars, which can be timed with high precision, have a stability comparable
to atomic-clock-based time standards when averaged over decades.

In 1974, Joseph Hooton Taylor and Russell Hulse discovered for the first time a PSR in a binary system, PSR
B1913+16. This PSR orbits another NS with an orbital period of just 7.75 hours, and the two neutron stars are
believed to be nearly equal in mass, about 1.4 solar masses. The minimum separation is about 1.1 solar radii, while
the maximum is 4.8. The orbit is inclined at about 45 degrees with respect to the plane of the sky, and the orienta-
tion of periastron changes because of GR precession by about 4.2 degrees per year. Observations and timing of the
pulsed emission showed that the orbit continually contracts, according to the predictions of General Relativity for
emission of gravitational waves, providing the first evidence ever of their existence.

In 1992, A. Wolszczan discovered the first extrasolar planets around PSR B1257+12, by timing residuals. The
pulsar was orbited by two planets, whose masses were initially estimated to be 3.4 and 2.8 times Earth’s mass. The
radii of their orbits are 0.36 and 0.47 AU respectively.

In 2003 radio astronomer Marta Burgay discovered PSR J0737-3039(A/B), the only known system containing
two pulsars, thus a double pulsar system. The object is similar to PSR B1913+16. The orbital period of J0737-
3039 is 2.4 hours, the shortest yet known, which enables the most precise tests of gravity, showing an excellent
agreement between GR and observations. The energy loss due to gravitational waves shrinks the orbit (4× 107 km
in radius, with eccentricity 0.09) by 7 mm per day. Pulsar A has a period of 23 milliseconds, and a mass 1.34M�.
Pulsar B has a period of 2.8 seconds, and a mass 1.25M�. The orbit is seen almost edge on, with eclipses when
the magnetosphere of pulsar B, which is filled with absorbing plasma, blocks radiation from pulsar A. Due to rel-
ativistic spin precession, the pulses from Pulsar B are no longer detectable since March 2008, but are expected to
reappear in 2035.

Figure 1.1: Left panel: distribution of pulsars on the sky in galactic coordinates. Right: distribution of young
pulsars (spin-down age < 1 Myr) at low galactic latitudes (−20◦ < b < 20◦), as a function of their galactic
longitude. Shaded areas indicate the location of the galactic spiral arms (red is the Norma arm, gree the Crux-
Scutum, blue the Sagittarius-Carina, and yellow the Orion one)

1.2 Pulsars are Neutron Stars

It was immediately recognized, after the discovery of PSRs, that only NSs could be at the origin of the observed
radio pulsed emission. PSRs are concentrated on the plane of the galaxy. This implies that they are a galactic
population, analogous to regular stars, and similar objects. The two main characteristics of PSRs are the period
P and the period derivative Ṗ (which is always positive, indicating that the period increases with time). Fig. 1.2
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shows the period and period derivative of known PSRs. It is immediately evident the existence of two populations:
one characterized by periods ranging from P = 0.03 s to a few s, and with typical period derivatives in the range
Ṗ = 10−17 − 10−13 s s−1; the other with periods in the range P = 10−3 − 10−2 s, and period derivatives in the
range Ṗ = 10−21 − 10−19 s s−1. The first group is generally referred as the regular or canonical pulsars, the
second as millisecond or recycled pulsars. While the origin of these two populations is different, the first being
the outcome of Core-Collapse SNe of single progenitor, the second instead originating in binary systems after mass
transfer episodes, their emission and the conditions of their magnetospheres are supposed to be governed by the
same physics.

Figure 1.2: Left panel: distribution of pulsars spin period in seconds Middel panel: distribution of pulsar psin-
down ages in years. Right panel: distribution of the pulsar heigh from the galactic plane in kpc. The red line
rapresent an exponential distribution with scale-heigh equal to 650 pc.

The rapid periodicity, up to a few milliseconds, reduces greatly the possible choices. The origin must be a compact,
stellar mass object, either a White Dwarf, a Neutron Star or a Black Hole. In astrophysics there are only three
mechanisms that can give origin to periodic emission: pulsation, orbital motion, and rotation. Each of these has
characteristic properties that allow one to identify it. Let us discuss them one by one:

Pulsation. Stars are known to pulsate. A self gravitating gaseous sphere has a typical pulsating frequency that
can be derived from a simple dimensional argument (for a more detailed derivation see ...). There is only one
possible combination of a mass M a radius R and the gravitational constant G that has the dimension of time,
and this is:

τ =
√
R3/GM = 1/

√
Gρ (1.1)

where ρ is the average density. To get the typical observed periods, the ratio M/R3 should be in the range
108 − 1013 g cm −3. This range is too high for WDs, whose typical masses are ∼ M� and typical radii are
∼ 109 cm, giving a density of the order of 106 g cm−3. It is too small for NSs, which have typical densities
of the order of 1014 g cm−3. BHs can oscillate only for very brief periods of the order of their light crossing
time. Moreover, whatever the origin of the oscillation, it is unlikely that only one mode (i.e. the fundamental)
will be excited. One would expect power also at higher harmonics, which is not observed.

Orbital motion. A star orbiting a companion can give rise to a modulated signal. The period of the signal will
be the Keplerian orbital period of the emitting star. It is well known that the orbital period increases with the
distance between the two stars. The minimum possible period corresponds to a situation where the two stars
are in contact with each other, and their separation is of the order of their radius. The minimum Keplerian
orbital period is:

2R(4π2)/τ2 = GM/R2 → τ '
√
R3/GM = 1/

√
Gρ (1.2)

analogous to what was found previously. For typical WD binaries the minimum Keplerian period is larger
than the observed PSRs periods. For binary NSs the minimum Keplerian period is smaller, so, in principle,
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with a suitable choice of separations one could reproduce the observations. The same holds for binary BHs or
BH-NS systems. However close binary systems are known to be sources of gravitational waves (see section
....). The loss of energy, due to gravitational waves emission, leads to a contraction of the orbital distance, and
to a secular decrease of the period (the orbital speed increases). This is the opposite of what is observed.

Rotation. If an emitting spot is present on the surface of a rotating object, a periodic signal will be produced,
with a period equal to the rotational one. The minimum rotation period of a self gravitating object is given by
equating the centrifugal acceleration at the equator to the gravitational one:

R(4π2)/τ2 = GM/R2 → τ '
√
R3/GM = 1/

√
Gρ. (1.3)

Again the same result. While nothing prevents a BH from rotating, it is impossible to attach anything to its
surface. Based on the previous discussion the minimum rotation period of a WD is ∼ 10 s, too long. For NSs
the the minimum rotation period is ∼ 10−3 s. PSRs could be rotating NSs. Moreover, a rotating object that
loses energy will spin down, and one would expect a secular increase of the period, compatible with what is
observed.

From the above discussion it is evident that, among the possibilities discusses, only rotating NSs can explain the
observed periods and period derivatives.

1.3 The NS zoo

NSs show a vast and diverse phenomenology, ranging from the canonical PSRs, to extreme objects like Magnetars,
from old isolated NSs to accreting systems. Here we present a brief review of the various classes in which they have
been divided during the years. The divisions are mostly based on their observational properties, but the distinctions
often hide a much more profound difference in the mechanisms responsible for their emission/evolution. At the
moment a unifying picture able to relate all of them is still lacking.

1.3.1 Pulsars

Having already discussed their theory, we will here only review briefly their observational properties. Rotational
Powered Pulsars represent the bulk of the observed NSs, with periods that span the range from ∼ 1 ms up to 10 s.
Looking at the P − Ṗ diagram in Fig. 1.3 it is evident that Pulsars can be grouped in two main families: the
Canonical PSRs and the Millisecond PSRs (MSPs). Canonical PSRs have periods ranging from P ∼ 0.003 s to
a few seconds, with spin-down rates Ṗ ∼ 10−18 ÷ 10−11 and dipole magnetic fields ∼ 1010 − 1014 G. They are
born in the Core-Collapse supernova of a massive progenitor. Millisecond Pulsars are characterized by very short
periods P . 10 ms and weak dipole magnetic fieldsB . 1010 G. With a characteristic age τ & 1 Gyr, MSPs are
believed to be the final outcome of NSs undergoing mass accretion from a companion in a close binary systems.
Initially born as a normal PSRs the NS spin down for tens of Myr until, if the geometry of the binary is favorable
for mass transfer, it undergoes accretion that spins it up and buries its magnetic field.

Both canonical and millisecond PSRs have traditionally been detected thanks to their radio pulsations and are
consequently generally referred as Radio-PSRs. At present we know more than 2500 Radio-PSRs. Some of them
are visible also at other wavelengths, as pulsating optical, X-ray or γ-ray sources. We have detected more than 100
X-ray PSRs and almost 160 γ-ray PSRs. Today we also know radio-quiet PSRs that have been discovered thanks
to their pulsed high energy emission (typically γ-rays).
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The pulse profile of PSRs differs depending on the energy one is looking at. The X-ray or γ-ray pulses are
usually not in phase with radio pulses, and much broader, suggesting that they have origin in different regions of
the magnetosphere: closer to the polar cap for the radio, in the outer magnetosphere for the γ-rays.

The spinning dipole model predicts that the spin down of RPPs should be typically smooth and predictable. This
is observed on a secular timescale, even if none of the measured braking indexis agrees with the dipole expectation
n = 3. However,iIn a few PSRs we observe glitches, i.e. sudden and unpredictable changes in spin down, during
which the spin rate increases to return to its initial value on a timescale of days to weeks.

Sometimes PSRs can also undergo pulse nulling: an abrupt cessation of pulsed radio emission that can last even
for ∼ 104 s. A particular class of PSRs, the Rotating Radio Transients (RRATs) show an extreme nulling behav-
ior: no pulsed emission is observed between single radio flashes. PSRs showing strong nulling and RRATs are
usually found close to the death-line in the P − Ṗ diagram, suggesting that pair creation and acceleration in their
magnetospheres might be close threshold conditions.

1.3.2 Magnetars

Magnetars are NSs characterized by a typical dipole magnetic field, inferred from spin-down, in the range 1014 −
1015 G. Located in the up-right corner of the P − Ṗ diagram with rotational periods in the range ∼ 2 − 12 s,
they have typical spin-down ages of the order of 104 yr. They are isolated objects not belonging to any binary
system. Magnetar as strongly magnetized NSs, were proposes in the early ’90s to explain and unify two distinct
classes of NSs: the Soft Gamma Repeaters (SGRs) and the Anomalous X-ray pulsars (AXPs). Both classes are
characterized by a persistent X-ray emission with luminosities LX ∼ 1033 − 1036 erg s−1. AXPs show a phase
modulation of their X-ray emission, with a large pulsed fraction. They were initially identified as canonical X-ray
pulsars with unexpected high luminosity and pulsed fraction in soft X-rays. SGRs instead were first discovered
thanks to their flaring activity with X-ray bursts whose duration is ∼ 0.1 − 1 s and whose peak luminosities are
∼ 1040 − 1041 erg s−1. Originally though to be a sub-classes of Gamma Ray Bursts (GRBs), only in 1987 they
were recognized as different objects. Indeed, unlike GRBs which are single events, SGRs show recurrence. SGRs
are also sources of violent events, known as giant flares, during which an amount of energy ∼ 1044 − 1046 erg is
released in a very short time < 1 s.

1.3.2.1 The Magnetar Idea The properties of the quiescent emission in SRGs and AXPs put severe constraints
on the possible source of the observed energy. A rough estimate of the rotational energy of a NS is given by:

Erot =
1

2
IΩ2 ≈ 1044

(
P

10s

)−2

erg (1.4)

where I ≈ 1045 g cm2 is the moment of inertia (for a NS with M ' 1.4M� and R ' 10 km), Ω the rotation rate
and P the period (of the order of 10 s for typical magnetars). This energy should be compared with the emitted
energy that can be roughly estimated by the product of their X-ray luminosity with the typical spin-down age
τLX ∼ 1044 − 1047 erg s−1. It is immediately evident that the rotation cannot support their persistent emission,
much less their giant flares, which alone carry an amount of energy comparable to the rotational one.

On the other hand one can try to compute the amount of magnetic energy stored inside the neutron star, assuming
the dipole estimate B ∼ 1015 G to be correct. One finds: Emag ≈ R3B2 ∼ 1048 erg. This is enough to sustain the
persistent emission and the flaring activity.
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1.3.2.2 Independent Estimates of the Magnetic Field In the case of Magnetars/SGRs the giant flares can be
used to obtain independent estimates of the strength of the magnetic field. The giant flares are characterized by an
initial short < 1 s spike of strong hard X-ray soft γ-ray emission with a luminosity that can be as high as 1046 erg.
The event then shows a long lasting (a few hundreds seconds) tails with a modulation at the rotational period of the
NSs. This tail is due to an electron-positron fireball. Its modulation suggests that it must be confined in the inner
magnetosphere of the NS. This implies that the magnetic pressure at the edge of the fireball at a radius ∆R above
the crust, must be strong enough to oppose the one from the pair-plasma EFB/3. EFB is the energy contained in
the fireball that can be obtained multiplying the luminosity of the tail with its duration and is ∼ 1044 erg.

B2(R+ ∆R)

8π
&

EFB

4π∆R3
(1.5)

Assuming a dipolar magnetic field B ∝ R−3 the above relation implies:

B(R) & 2× 1014

(
∆R

10km

)−3/2(
1 + ∆R/R

2

)3

G (1.6)

where we can assume ∆R ≈ R, otherwise there will be no modulation.

Giants flares (in particular their initial spike) offer another way to estimate the magnetic field. For an astrophysical
source of size R with luminosity L lasting for a time ∆t the total energy must be L∆t, and it will be related to the
mass contained in the source by:

L∆t = η
4π

3
R3nmpc

2 (1.7)

where n is the baryonic density, mp the proton mass, and η < 1 is the efficiency matter to energy conversion. For
an instantaneous injection (the duration of the spike ∼ 1s is much longer than the typical timescales at the base of
the NS magnetosphere ∼ R/c ∼ 10−3 s) the duration of the source is related to the time it takes for a photon to
escape.

∆t >
R

c
(1 + τT) (1.8)

where R/c is the light crossing time and τT the optical depth. The correction comes from the fact that for τT > 1
photon diffuse witha random walk and the escape time increases accordingly. The opacity in the fireball is just the
Thompson opacity due to electron τT = σTnR, where we have assumed one electron per baryon (the case of H).
Combining Eq. 1.7 and 1.8 to simplify the radius, one has:

∆t >
3

4π

σT

mpc4
L

η

(1 + τT)2

τT
>

3

π

σT

mpc4
L

η
(1.9)

given that the minimum is for τT = 1. One than has:

L

∆t
< 2η × 1042erg s−2 (1.10)

This in known as Cavallo-Rees limit, and it does not depend on any property of the source. Strangely in the initial
spike of giant flares L/∆t ∼ 1046erg s−2. The solution to this paradox come from the fact that for strong magnetic
fields above the quantum threshold BQ = 4.4× 1013G, the scattering cross section for photons with energy below
100keV differs from the Thompson value:

σB = σT

(
hνBQ

mec2B

)2

(1.11)

using this cross section, and adopting a typical photon energy of ∼ 15keV one has:

B ≈ 100BQ

(
0.1

η

)1/2

∼ 1015G (1.12)

consistent with the values obtained in other ways.
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Figure 1.3: Diagram of the Period derivative vs Period for known NSs. The various classes are indicated with
different symbols. The shaded are represent the portions of this diagram representative of those classes: orange
PSRs; purple Magnetars; blue INS. Also shown are isochrones, isomagnetizations and iso-energetic curves.

1.3.3 INS and CCO

Isolated Neutron Stars, INSs (also known as XINSs due to the fact that they emit mostly in X-rays) are slowly
rotating neutron stars with spin periods between 3 and 11 s, an inferred magnetic field slightly higher than that of
rotational PSRs, and characteristic ages τ ∼ 2 Myr. They show no pulsed emission similar to PSRs either in radio
or other wavelengths, and are detected as isolated X-ray thermal sources, emitting soft X-rays due to cooling. The
cooling is confirmed by the black body shapes of their spectra. For this reason we know only a few of them (7 to be
precise) within a distance of 500 pc. They lack any observed associated supernova remnant or surrounding nebula.
They do not show any magnetospheric activity.

Their emission peaks in the X-ray band with a faint optical/UV counterpart. The light curve shapes are qua-
sisinusoidal and single-peaked, which is thought to be due to the presence of an hot spot on their surface. Their
X-ray luminosity is ∼ 1030 − 1032 erg s−1. In the case of RX J0720, it is even larger than the spin down luminos-
ity. XMM-Newton’s observations made it possible to detect wide absorption features in their spectra, either due
to proton cyclotron resonances or atomic transitions in light elements. The values of B obtained from spin-down
assuming magnetodipolar braking are in reasonable agreement with those inferred from the line energy.

INSs emission is believed to be powered by the residual thermal energy of the NS. The inferred temperatures
and thermal luminosities are, however, one order of magnitude higher than those of PSRs of the same age. This
may suggest that they were born with an initially higher magnetic field, which now has decayed supplying an
additional source of heating. Because of the poor statistics, at the moment it is not clear if INS can be connected
with other families of the NSs zoo: they may be extreme RRATs, high-B PSRs viewed of-beam from their radio
emission or, finally, old magnetars.
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Central Compact Objects, CCOs are young NSs detected as X-ray sources at the center of supernova remnants
of typical age . 104 yr. The emission properties of CCOs are similar to those of XINSs. The observed spec-
tra are purely thermal and can be fitted using multiple blackbody components. The luminosity spans the range
LX = 1033 − 1034 erg s−1. About ten CCOs are known to date but pulsations have been observed in only three
of them. In the P − Ṗ plane CCOs are between PSRs and millisecond PSRs, with spin period P ∼ 0.1 s and
period derivative Ṗ ∼ 1017. Contrary to INSs the inferred magnetic field is rather low B ∼ 1010 G. Note that the
characteristic age τ ∼ 100 Myr is much longher than the age of the supernova remnant. This may suggest that
CCOs are born with a low magnetic field and for this reason they are referred also as anti-magnetars. Despite the
weakness of the dipolar magnetic field, the presence of modulated emission in some CCOs indicates a strongly
non-uniform surface temperature distribution. This, in turn, seems to suggest that CCOs hide a stronger magnetic
field in the interior. This magnetic field could have been buried by mass fallback accretion during core collapse.

1.3.4 LMXB and HMXB

NSs belonging to binary systems can undergo accretion of matter from the companion. In this case is the accretion
that powers the observed X-ray emission. The details of the accretion process can be quite complex, depending
on the mass accretion rate, the properties of the companion, the cooling properties of the accreting matter, the
strength of the magnetic field. These kinds of systems are mainly divided into two separate classes: Low Mass
X-ray Binaries (LMXBs) and High Mass X-ray Binaries (HMXBs).

A typical LMXB is a binary star system where one of the components is either a black hole or neutron star, while
the other component, the donor, is less massive than the compact object, and can be a low mass main sequence star
(usually a Red Dwarf), a WD, or an evolved star (Red Giant). Usually it fills its Roche lobe and therefore trans-
fers mass to the compact star via Roche lobe overflow, forming an accretion disk. The orbital periods of LMXBs
range from ten minutes to hundreds of days. Almost all the radiation is emitted as X-rays from the disk, or from
the surface shear layer, and typically less than one percent in visible light (from the donor or from reprocessed
X-rays), so they are among the brightest objects in the X-ray sky, but relatively faint in optical. In general the
rotation rates of the NSs in these systems are very high (close to millisecond period), while their magnetic fields
are ∼ 109 G . They show variability in the form of X-ray bursts, caused by thermonuclear explosions created by
the accretion of Hydrogen and Helium. Approximately two hundred LMXBs have been detected in the Milky Way,
and of these, about ten LMXBs have been discovered in globular clusters. They can be seen also in distant galaxies.

In the case of HMXBs the companion star is usually an O or B star, or a blue supergiant with mass ≥ 5M�.
These stars have tipically strong winds. A fraction of the stellar wind of the massive normal star can be captured
by the compact object, if it flies close enough to be gravitationally bound, and produce X-rays as it falls onto the
compact object itself. In a HMXB, the massive star dominates the emission of optical light, while the compact ob-
ject is the dominant source of X-rays. The massive stars are very luminous and therefore easily detected. HMXBs
are observed to vary with a smooth periodicity and do not show bursts. These because the accretion of matter is
magnetically funneled into the poles of the accretor. As the poles rotate in and out of view, we observe pulses
of X-rays. In HMXBs NSs have periods in the the range ∼ 1 − 100 s with magnetic field ∼ 1012 G, sometimes
estimated from cyclotron absorption lines in the X-ray spectra. Once a HMXB has reached its end, if the separation
is large enough, and if the system remains bound after the supernova explosion of the massive donor (> 10M�), it
can become a double neutron star binary.





CHAPTER 2

THE STATE OF MATTER IN
NEUTRON STARS

2.1 Fermi-Dirac Distribution

We begin by reviewing some basics of classical statistical mechanics. In describing a system made up of a great
many particles, it is usually possible to specify some macroscopically measurable independent parameters. These
parameters are termed the external parameters of the system. Examples of such parameters are the volume, the
total energy, the particle total number etc. A macrostate of the system is defined by specifying the external pa-
rameters, and any other constraint to which the system is subject. For example, if we are dealing with an isolated
system (i.e., one that can neither exchange heat with, nor do work on its surroundings) then the macrostate might
be specified by giving the values of the total particle number and the constant total energy. A microstate of the
system, on the other hand, is defined as a state for which the conditions of all the individual particles are completely
specified. For a many-particle system, there are generally a very great number of microstates which are consistent
with a given macrostate.

At the typical densities one encounters in White Dwarves and Neutron Stars, quantum effects, and in particu-
lar the Pauli Exclusion principle for fermions, cannot be neglected. Indeed, as we will show, it is the fact that
no two fermions can have the same quantum numbers, that allow these objects to exist in the first place. It is
the so called degeneracy pressure that keeps them in equilibrium against the gravitational force. We are however
going to begin our derivation of the equation of state for fermions at high densities, with the classical Boltzmann
distribution.

2.1.1 Classical Boltzmann Distribution

Let us consider a system of N particles, distributed over m energy levels, such that in this macrostate each level j
has nj particles. The number of way to assign n1 particles to the first energy level, is just the number of possible
combinations of n1 elements out of a total of N :

W1 =
N !

n1!(N − n1)!
. (2.1)

The number of ways to assign n2 particles out of the remaining N − n1 particles to the second energy level is:

W2 =
(N − n1)!

n2!(N − n1 − n2)!
, (2.2)

and so on. The number of ways W to assign n1 particles to the first level, n2 to the second .... nj to the j-th one
etc., up to the m-th level, is:

W =

m∏
j=1

Wj =
N !

n1!(N − n1)!
× (N − n1)!

n2!(N − n1 − n2)!
× ..... =

N !

n1!n2!....nm!
=

N !∏m
j=1 nj !

. (2.3)

Neutron Stars, Lecture Notes.
By Bucciantini Copyright c© 2020 John Wiley & Sons, Inc.

11



12 THE STATE OF MATTER IN NEUTRON STARS

W is related to the probability of the given distribution sequence, and corresponds to the total number of microstates
for the given macrostate. The sequence n1....nj .....nm that maximizes W is the equilibrium configuration and
the relative macrostate is the equilibrium macrostate. The specific equilibrium distribution depends also on the
constraints imposed on the system. For example, in a close system that does not exchange matter or energy (heat
or work) with the surroundings, the total number of particles and their total energy E are conserved. Then the two
constraints are:

m∑
j=1

nj = N

m∑
j=1

njej = E (2.4)

where ej is the energy of level j. One can then look for the configuration that maximizes W [or equivalently
ln (W )], enforcing the constraints by making use of Lagrangian multipliers.

d ln (W ) + α

m∑
j=1

dnj + β

m∑
j=1

ejdnj = d

ln (N !)−
m∑
j=1

ln (nj !)

+ α

m∑
j=1

dnj + β

m∑
j=1

ejdnj = 0

d

N ln (N)−N −
m∑
j=1

[nj ln (nj)− nj ]

+ α

m∑
j=1

dnj + β

m∑
j=1

ejdnj = 0 (2.5)

d

− m∑
j=1

nj ln (nj)

+ α

m∑
j=1

dnj + β
m∑
j=1

ejdnj = 0

where, in the first we have used Stirling’s approximation for large N : ln (N !) = N ln (N) − N , and in the third
we have used Eq. 2.4 and we have reabsorbed extra terms of the sum of dnj into the coefficient α. So we have:

m∑
j=1

[dnj − dnj ln (nj)] + α

m∑
j=1

dnj + β

m∑
j=1

ejdnj = 0

m∑
j=1

dnj [ln (nj) + (1− α)− βej ] = 0 ⇒ ln (nj) = βej + (α− 1) ⇒ nj = eα−1eβej (2.6)

2.1.1.1 Equilibrium Temperature The parameter α enters just as a normalization, while the way different en-
ergy levels are populated is encoded by the parameter β. To understand the meaning of the latter, consider a system
containing particles of two species (a) and (b), capable of interacting and exchanging energy among them, but not
with the surrounding, and each populating different energy levels e(a)

j and e(b)
j . Now the total number of particles

of each specie is separately conserved, while only the sum of total energy of the two will be:
m∑
j=1

n
(a)
j = N (a),

m∑
j=1

n
(b)
j = N (b),

m∑
j=1

[n
(a)
j e

(a)
j + n

(b)
j e

(b)
j ] = E (2.7)

The number of ways W to assign n(a)
j particles of specia (a) to the j-th level of energy e(a)

j , and n(b)
j particles

of specia (b) to the j-th level of energy e(b)
j , is just the product of W (a) by W (b), each computed separately as in

Eq. 2.3:

W =
N (a)!∏m
j=1 n

(a)
j !
× N (b)!∏m

j=1 n
(b)
j !

. (2.8)

If one repeats the maximization procedure done before, using now three Lagrangian multipliers, both in terms of
dn

(a)
j and dn(b)

j , one finds that the configurations that maximaze W are:

n
(a)
j = e[α(a)−1]eβe

(a)
j and n

(b)
j = e[α(b)−1]eβe

(b)
j (2.9)

We see that the same parameter β characterizes how the various energy levels are populated for both species. It is
a common constant that characterizes two systems at equilibrium. We know from thermodynamics that this cannot
be but the temperature (or any function of it).
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2.1.1.2 Equilibrium from Detailed Balance It is well known that in order to establish thermodynamical equi-
librium, particles need to interact among themselves, and exchange energy. In the previous discussion, however, no
mention of interaction was made. The role of interactions was hidden under the concept of the macrostate with the
maximum number of corresponding microstates. The idea is that a thermodynamics system, due to interactions,
changes rapidly its microstate, each one being equally probable. Then the most probable macrostate in which a
system can be found at any time is the one with the maximum number of corresponding microstates.

Here we will show how the same results can be derived if one takes interactions explicitely into account. We
will refer to interaction events as scattering, even if usually the term is used with the idea that the system losses
memory of its initial state, while for classical systems the interaction of two particles is always fully deterministic.
Let us call C12→1′2′ the probability per unit time for a couple of particles with energy e1 and e2 to interact through
an interaction potential V (operating over distances much smaller than the distance travelled by a particle between
successive interactions) and to end with energies e′1 and e′e respectively. This is nothing else that the differential
cross-section for the interaction dσV /de1de2de

′
1de
′
2. Then the rate of scatterings from e1 and e2 to e′1 and e′2 is

just:

R→ = C12→1′2′f(e1)f(e2) (2.10)

where f(e) is the distribution function, i.e. the probability to find a particle with an energy e. Note that the rate
depends only on the probability of having particles in the initial states, and not on the final ones. The reverse
interaction where particles with energy e′1 end into e1 to e2, will have a rate:

R← = C1′2′→12f(e′1)f(e′2) (2.11)

Now as long as the potential V is conservative (i.e. the particles have no internal degree of freedom that can be
excited in the interaction), then the dynamics of the interaction will be Hamiltonian, the differential cross-section
will be unchanged, and C12→1′2′ = C1′2′→12.

Detailed balance requires the two rate to be the same at equilibrium R→ = R←, and this implies f(e1)f(e2) =
f(e′1)f(e′2). Now if the total energy is conserved e1 + e2 = e′1 + e′2, one can set e′1 = e1 +x, e′2 = e2−x, leading
to:

f(e1)f(e2) = f(e1 + x)f(e2 − x) (2.12)

Given that this must hold for any value of x, it will also hold in the limit of small x, where we can perform a Taylor
expansion

f(e1)f(e2) =

[
f(e1) +

df

de

∣∣∣∣
e1

x

][
f(e2)− df

de

∣∣∣∣
e2

x

]
+O(x2)

= f(e1)f(e2)

[
1 +

(
d ln (f)

de

∣∣∣∣
e1

− d ln (f)

de

∣∣∣∣
e2

)
x

]
+O(x2)

⇒ d ln (f)

de
= β = const (2.13)

given that the equality must hold for any x. So we recover the previous result:

f(ei) ∝ eβei . (2.14)

2.1.1.3 Maxwell-Boltzmann Equation of State If one identifies β = −1/kT (for dimensional reasons), then
one recovers the Classical Maxwell-Boltzmann distribution nj ∝ e−ej/kT . More generally if the level j has a
degeneracy gj (there are gj somehow distinguishable levels all having the same energy) then:

nj = gjAe
−ej/kT (2.15)
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The constraints can be used to fix the normalization. Assuming that the energy levels are finely spaced (ej+1−ej �
kT ), one can assume that the energy varies continuously, and replace the summation with the integral:

N =

∫ ∞
0

Ag(e)e−e/kT de, E =

∫ ∞
0

Aeg(e)e−e/kT de ⇒ E ∝ NkT, (2.16)

where the proportionality coefficient depends on the dimensionality [the degeneracy g(e)] of the system. If one
assumes that g(e) ∝ ed with d > −1, recalling that the definition of the Euler’s Gamma function is:

Γ[d+ 1] =

∫ ∞
0

xde−xdx, (2.17)

then one finds:

E = NkT
Γ[d+ 2]

Γ[d+ 1]
⇒ E = 3NkT/2 for d = 0.5 (2.18)

telling us that degeneracy for the classical Maxwell-Boltzmann distribution in 3D is g(e) ∝ √e.

2.1.2 Quantum mechanics and the Fermi-Dirac Distribution

The classical derivation presented above relies on two principles: particles are distinguishable (exchanging two
particles among different energy levels leads to different configurations that are counted separately); each phase
space volume (energy level) can contain as many particles as one wishes.

These assumptions contrast with quantum mechanical principles: similar particles (i.e. electrons, protons, neu-
trons) cannot be distinguished (any exchange of two particles leads to the same state, and must be counted only
once); fermions obey Pauli’s Exclusion Principle. Two fermions cannot have the same quantum numbers. More-
over, while in classical mechanics the phase space can be partitioned into an arbitrary number of volume elements,
in quantum mechanics the Uncertainty Principle sets the minimal size of a phase space volume element to be
dpxdpydpzdxdydz ' h3. Within each of these elementary volumes one can put at most one fermion, or g fermions
if there are other g quantum numbers to be specified (i.e. g = 2 for electrons given the different spins).

Suppose we have a number of energy levels, labeled by index j, each level having energy ej , and containing
each nj particles. Suppose each energy level can be partitioned into gj ≥ nj distinct sublevels, all of which have
the same energy, but which are distinguishable by other quantum numbers (gj is the degeneracy of the level). For
example, two particles may have different momenta (i.e. their momenta may be along different directions), in
which case they are distinguishable from each other, yet they can still have the same energy. gj is just the number
of phase space volume elements having all the same energy ej .

The number of ways of distributing nj indistinguishable particles among the gj sublevels of an energy level,
with a maximum of one particle per sublevel, is just the number of possible combinations of nj elements out of gj :

Wj =
gj !

nj !(gj − nj)!
(2.19)

The number of ways that a macrostate characterized by a set of occupation numbers nj (j = 1, ...,m) can be
realized is the product of the ways in which each individual energy level can be populated:

W =

m∏
j=1

Wj =

m∏
j=1

gj !

nj !(gj − nj)!
(2.20)
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Following the same procedure used in deriving the Maxwell-Boltzmann statistics, we wish to find the set of nj for
which ln (W ) is maximized, subject to the constraint that there are a fixed number of particles, and a fixed total
energy. As before, we can apply a method based on Lagrangian multipliers:

d ln (W ) + α

m∑
j=1

dnj + β

m∑
j=1

ejdnj = 0

d

 m∑
j=1

[ln (gj !)− ln (nj !)− ln (gj − nj)!]

+ α

m∑
j=1

dnj + β

m∑
j=1

ejdnj = 0

d

 m∑
j=1

[− ln (nj !)− ln (gj − nj)!]

+ α

m∑
j=1

dnj + β

m∑
j=1

ejdnj = 0 (2.21)

given that the degeneracies gj are constants of the energy levels. Then, applying Stirling formula, and reabsorbing
terms in dnj into α, one gets:

d

 m∑
j=1

[−nj ln (nj) + nj − (gj − nj) ln (gj − nj) + gj − nj ]

+ α

m∑
j=1

dnj + β

m∑
j=1

ejdnj = 0

d

 m∑
j=1

[(nj − gj) ln (gj − nj)− nj ln (nj)]

+ α

m∑
j=1

dnj + β

m∑
j=1

ejdnj = 0

m∑
j=1

[
d[(nj − gj) ln (gj − nj)− nj ln (nj)] + αdnj + βejdnj

]
= 0

m∑
j=1

dnj [ln (gj − nj)− ln (nj) + α+ βej ] = 0 (2.22)

which implies:

ln

(
gj − nj
nj

)
+ α+ βej = 0 ⇒ nj =

gj
e−α−βej + 1

(2.23)

Note that in the limit −α − βej � 1. this reduces to the Maxwell-Boltzmann result Eq. 2.6. It is then natural to
identify β = −1/kT . However, even in this case, it is possible to show explicitly that β represents a constant equal
for all species at thermodynamic equilibrium. Let us repeat the same argument as in Sect. 2.1.1.1, and consider
two species of particles, subject to the constraint that the number of each specie and the sum of their total energy
is conserved, Eq. 2.8. The number of ways W to assign n(a)

j particles of specia (a) to the g(a)
j sublevels of the j-th

level of energy e(a)
j , and n(b)

j particles of specie (b) to the g(b)
j sublevels of the j-th level of energy e(b)

j , is just the

product of W (a) by W (b), each computed separately as in Eq. 2.20. Maximization over dn(a)
j and dn(b)

j , leads to
the following conditions:

n
(a)
j =

g
(a)
j

e−α
(a)−βe(a)

j + 1
and n

(b)
j =

g
(b)
j

e−α
(b)−βe(b)j + 1

(2.24)

which show that the Lagrangian multiplier β is the same for both, whence if follows its identification with a
function of the temperature.

2.1.2.1 Equilibrium from Detailed Balance In Sect. 2.1.1.2 we showed that the Maxwell-Boltzmann distribu-
tion cound be derived from delatiled balance, considering explicitly the interaction of particles. The same can be
done for the distribution of fermions, but now the argument must be recast in quntum mechanical terms, and we
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need to account for Pauli’s Exclusion Principle. This will illustarte a key feature of scattering processes in degen-
erate system. For simplicity we will neglect the degeneracy of energy levels, and assume gj = 1 for all j.

Let us consider a system formed by two particles with energies e1 and e2 whose quantum mechanical state is
|1, 2〉. If they interact through a potential V leading to a final state |1′, 2′〉, with energies e′1 and e′2 respectively,
then the transition probability per unit time will be C12→1′2′ = 〈1′, 2′|V |1, 2〉. The rate of transitions from |1, 2〉
to |1′, 2′〉 is:

R→ = C12→1′2′f(e1)f(e2)[1− f(e′1)][1− f(e′2)] (2.25)

where f(e) is the distribution function, i.e. the probability to find a particle with an energy e. Note that the rate
depends now not only on the probability of having particles in the initial states, as it was before, but also on the
probability that the final states are available (i.e. they are not already occupied). This is the manifestation of Pauli’s
Exclusion Principle. In a fermions system, a transition will be forbidden if the final state is already occupied. More
generally the Pauli’s Exclusion Principle will lead to a suppression of the transition, reducing the effectiveness
of scattering. This will have important consequences in terms of transport of energy, or of charges (i.e. in terms of
thermal/electric resistivity).

The rate of the reversed reaction will be:

R← = C1′2′→12f(e′1)f(e′2)[1− f(e1)][1− f(e2)] (2.26)

where C1′2′→12 = 〈1, 2|V |1′, 2′〉. As long as V is Hermitian (i.e. the quantistic equivalent of an Hamiltonian
potential), then C1′2′→12 = C12→1′2′ . Detailed balance thus requires:

f(e1)f(e2)[1− f(e′1)][1− f(e′2)] = f(e′1)f(e′2)[1− f(e1)][1− f(e2)] (2.27)

As before, if the total energy is conserved e1 + e2 = e′1 + e′2, one can set e′1 = e1 + x, e′2 = e2 − x, leading to:

f(e1)f(e2)[1− f(e1 + x)][1− f(e2 − x)] = f(e1 + x)f(e2 − x)[1− f(e1)][1− f(e2)] (2.28)

which can be written as:[
1

f(e1)
− 1

] [
1

f(e2)
− 1

]
=

[
1

f(e1 + x)
− 1

] [
1

f(e2 − x)
− 1

]
ω(e1)ω(e2) = ω(e1 + x)ω(e2 − x) (2.29)

where we have defined ω(e) = −1 + 1/f(e). Eq. 2.29 is formally equivalent to Eq. 2.12, and can be solved in the
same way, giving:

ω(ei) ∝ e−βei ⇒ f(ei) =
1

e−α−βej + 1
(2.30)

where we have chosen the (arbitrary) sign of the integration constant for consistency. The result is the same as in
Eq. 2.24.

2.1.2.2 Fermi-Dirac Equation of State Again, if one identifies β = −1/kT , then one recovers the Fermi-Dirac
statistics:

nj =
gj

e(ej−µ)/kT + 1
(2.31)

where we have introduced the chemical potential µ. The chemical potential has a clear interpretation as a function
of density in the limit of zero temperature:

n(e) = lim
T→0

g(e)

e(e−µ)/kT + 1
=

{
g(e) for e ≤ µ
0 for e ≥ µ (2.32)

The chemical potential is usually referred as Fermi Energy EF, which is the highest energy a fermion can have at
zero temperature. Moreover at zero temperature all state with e ≤ EF = µ are fully occupied, as shown in Fig. 2.1.

In the limit e� µ and e/kT � 1 one recovers the classical Maxwell-Boltzmann solution.
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Figure 2.1: One-dimensional [g(e) = 1] Fermi-Dirac distribution function for different values of the ratio of the
thermal energy kT over the chemical potential µ.

2.1.3 Heuristic interpretation of the Fermi Momentum

Consider a dense gas, with average distance in the x-direction between the particles of ∆x. According to Heisen-
berg’s uncertainty principle, the accuracy with which position and momentum of a single particle can be deter-
mined simultaneously is limited by ∆x∆px > h. Pauli’s exclusion principle now says that within this accuracy
no two particles may be in the same state, i.e. that the minimal allowed difference in momentum for identical
particles is given by ∆px > h/∆x. An analogous reasoning can be made for the y and z directions. But the
average distance between particles is related to their numerical density n. For an isotropic 3-dimensional system
∆x = ∆y = ∆z ≈ n−1/3, and this implies that the uncertainty over momentum (let say in the x-direction) will
be ∆px ≈ hn−1/3. Momentum cannot be determined with a higher accuracy: larger momenta are possible but
smaller ones are not (in the sense that it is not possible to establish them). So the system behaves as if the smaller
possible momentum is ≈ hn−1/3.

This is the origin of the Fermi Momentum, as the smallest momentum allowed by a system of particles with
average numerical density n. The Fermi energy, is nothing else than the energy associated with this momentum.

2.1.4 Equation of State in the Fully Degenerate Case

Consider a single free particle within a box of size L, with wave vector k = (π/L)n and corresponding momenta
p = (π~/L)n where n is a triplet of positive integers. The number of possible states with momenta between p
and p + d3p = p + dpxdpydpz will be (∆n)3 = ∆nx∆ny∆nz such that:

d3p =

(
π~
L

)3

∆nx∆ny∆nz =
(π~)3

V
(∆n)3 ⇒ 4πp2dp

8
=

(π~)3

V
(∆n)3 (2.33)

where the factor 1/8 comes from the fact that, in the on-shell formalism, we counted only positive integers con-
tributing to momenta only in one octant, and V = L3 is the volume. The on-shell approach is useful for free
particles because their energy depends only on the norm of the momentum p, and not on its direction. So the
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degeneracy of each energy level is equal to the degeneracy of the on-shell momentum space. One immediately
sees that, the degeneracy of the on-shell phase space volume between p and p+ dp is:

g = (∆n)3 =
4πp2dp

(2π~)3
V =

4πp2dp

h3
V (2.34)

which immediately shows the existence of a minimal phase space volume: (2π~)3.

Using Eq. 2.31 one finds for the density

N

V
=

∫ ∞
0

8π p2dp

(2π~)3

1

e(e(p)−EF)/kT + 1
(2.35)

where e(p) is the energy corresponding to the momentum p, and the factor 2 comes from the spin. In the same way
it is possible to compute the pressure given by the transverse momentum flux across a surface:

P =

∫ ∞
0

8π p2dp

(2π~)3

(v · n)(p · n)

e(p2/2m−EF)/kT + 1
(2.36)

where v and n are the velocity and surface normal respectively. For an isotropic distribution the integral in sin (θ)dθ
over all possible directions of (v · n)(p · n) = vp cos2 (θ) is equal to pv/3.

For non relativistic particles of mass m the energy is e = p2/2m. This implies that:

N

V
=

∫ ∞
0

8π p2dp

(2π~)3

1

e(p2/2m−EF)/kT + 1
(2.37)

and in the fully degenerate limit T → 0 one finds:

n =

∫ pF

0

8π p2dp

(2π~)3
=

8π p3
F

3(2π~)3
⇒ EF =

p2
F

2m
=

(2π~)2

8π2/3m
(3n)2/3 =

~2

2m
(3π2n)2/3 (2.38)

In the non relativistic case v = p/m and:

P =

∫ ∞
0

8π p2dp

3m(2π~)3

p2

e(p2/2m−EF)/kT + 1
(2.39)

which in the fully degenerate limit gives:

P =

∫ pF

0

8π p4dp

3m(2π~)3
=

8π p5
F

15m(2π~)3
⇒ P =

(
1

5m

)
(3π2~3)2/3n5/3 (2.40)

As the density increases so does the Fermi momentum and energy. At a certain point they will be higher than the rest
mass energy of the particles EF > mc2. Beyond this density one must use relativistic energy-momentum relations
to properly compute density and pressure. For relativistic particles the relation between energy and momentum is
e = cp. While the relation between momentum and velocity is vp = cp

This implies that:

N

V
=

∫ ∞
0

8π p2dp

(2π~)3

1

e(cp−EF)/kT + 1
(2.41)
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and in the fully degenerate limit T → 0 one finds:

n =

∫ pF

0

8π p2dp

(2π~)3
=

8π p3
F

3(2π~)3
⇒ EF = cpF =

c(2π~)

2π1/3
(3n)1/3 = (~c)(3π2n)1/3 (2.42)

while for the pressure:

P =

∫ ∞
0

8π p2dp

3(2π~)3

cp

e(cp−EF)/kT + 1
(2.43)

which in the fully degenerate limit gives:

P =

∫ pF

0

8π p3cdp

3(2π~)3
=

8πc p4
F

12(2π~)3
⇒ P =

( c
4

)
(3π2~3)1/3n4/3 (2.44)

independent from the mass of the particle.

It is possible to derive a generalized equation of state for the fully degenerate case, that smoothly connects the non
relativistic to the relativistic regime. The general relation among energy, momentum and velocity is:

e = mc2
(

1 +
p2

m2c2

)1/2

v =
p

m

(
1 +

p2

m2c2

)−1/2

(2.45)

leading to:

P =
8π

3m(2π~)3

∫ pF

0

p4dp

(1 + p2/m2c2)1/2
=

8πc p4
F

12(2π~)3
(2.46)

Using the following substitutions:

p/mc = sinh (t/4) pF = mc sinh (tF/4) EF = mc2 cosh (tF/4) (2.47)

one finds:

n =
1

3π2

(mc
~

)3

sinh3 (tF/4) P =

(
2m4c5

3π2~3

)
(sinh (tF)− 8 sinh (tF/2) + 3tF) (2.48)

2.2 Atmosphere

We begin by describing the physical properties of the atmosphere and of the outer layers of the crust of a typical
Neutron Star (NS). We will show that the values of density and temperature in the outer crust of a NS are not too
dissimilar from those holding inside a WD.

If Fig. 2.2, the spectrum of three isolated NSs is shown. These are systems where there is no evidence of any
magnetospheric activity, so that one can safely assume that the observed radiation comes from the NS photosphere
(i.e. surface). It is evident that such spectra are not very informative: there is no evidence of emission or absorption
features that might be used to constrain the composition of the NS atmosphere. In general a simple Black Body
radiation provides a quite good fit to the data. The maximum of the emission is reached at frequencies ∼ 1017Hz,
corresponding to a typical temperature ∼ a few 106K, and a typical thermal energy ETh ∼ 0.1keV. Only systems
with very high magnetic field > 1013G show higher temperatures ∼ 107K, most likely because of continuous
heating due to magnetic field dissipation (see Fig. 2.3). It is found that throughout the entire crust the temperature
ranges from 106 to 108 Kelvin, reaching the highest value at the base of the inner crust, where it merges into the
core.
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RX J1856.5-3754 RX J0720.4-3125 

101= 1014 

RXJ1605.3+3249 

FIGURE 1. Spectral energy distributions for RX J1856 (left), RX J0720 (center; with the X-ray spectrum from before the 
appearance of an absorption feature), and RX J1605 (right) . For the first two, the X-ray points are from Chandra/LETG spectra 
[18,21], and for RX J1605 the X-ray points are from XMM-Newton/RGS [28] The optical data are from a combination of ground-
based and space-based observations [14, 27]. The solid curves represent the best-fit black-body models to the X-ray data (with an 
absorption feature in the case of RX J1605); the dotted curves are the same model without interstellar extinction. 

cal/UV spectram is close to the slope of a Rayleigh-Jeans 

tail, but there are indications that it deviates [21, 22]. 

For RX J1605.3+3249 (hereafter RX J1605), the data 

are even sparser, but it might have even larger deviations 

from a Rayleigh-Jeans tail [30]. 

An elongated Ha nebula surrounding RX J1856 was 

found by van Kerkwijk and Kulkami [54]. The nature of 

this nebula is not entirely clear, but it is likely abowshock 

formed by the interaction between the neutron star's en-

ergetic wind and the interstellar medium through which 

it is traveling supersonically [e.g., 55]. In this model, we 

can infer E for RX J1856 even though P has not been 

measured, and find E '^ 1.2 x 10^^dl^^ ergs^^ (where 

the distance is 160(ii6o pc). Motch et al. [30] discov-

ered some evidence of H a emission from the position 

of RX J1605, but it has yet to be confirmed. 

Proper motions have now been measured for four of 

the INS [15, 22, 24, 30, and Motch et al., these pro-

ceedings]. The implied transverse velocities are gener-

ally '-^ 200 km s^ \ consistent with the pulsar population. 

Tracing the proper motions back, one finds that these INS 

are consistent with being bom in nearby OB associations 

'-̂  I Myr ago [56]. We have also been able to measure 

parallaxes to two of the INS. The distances are largely 

consistent with those estimated by Posselt et al. [41]. 

In the radio, there are no confirmed detections of any 

INS as a steady radio source or via pulsations [21, 27, 

32, 57]. Motivated by the similar location in the P — P 

diagram of the INS and the Rotating RAdio Transients 

(RRATs; [58]), there have also been searches for spo-

radic ratio bursts from the INS, and these too have been 

negative [see Burgay, Kondratiev in these proceedings]. 

Similarly, searches for counterparts in the near-infrared 

(where one might see emission from a faint companion 

or an accretion disk) have not been successful [59]. 

INFERENCES & ENERGY SOURCES 

From the general properties of the INS discussed above, 
it seems clear that the INS are reasonably young {^^ 
I Myr) isolated neutron stars. The X-ray emission that 
we see is plausibly thermal: the values of E that we 
measure or infer are all quite low, compared to X-ray 
luminosities of - 3 x 10^2^2^^ gj.g g-i ^f^j. j ^ J0720 

[21], where we normahze to a distance of 360(̂ 360 pc). 

In contrast to radio pulsars (and other rotation-powered 

objects such as Geminga), which have Lx '~ lO^^E [60, 

61] and where rotational energy powers the majority of 

the X-ray emission (some may be thermal), RX J0720 

has Lx/E'~ 60. Therefore, for RX J0720 rotation cannot 

power the X-ray emission, and we must resort to other 

mechanisms. While the value of i? inferredforRX JI856 

from the Ha nebula is of a different order than those for 

RX J0720 and RX 1308, it is still much less than what 

would be necessary to contribute significantly to the X-

ray emission. However, unlike for RX J0720 where the 

age inferred from timing is close to the kinematic age, 

using the inferred E for RX JI856, its spin period, and 

kinematic age it is hard to form a consistent picture, 

something we are investigating. 

The remaining energy sources that we must consider 

are accretion, magnetic fields, and thermal energy, all of 

which are seen in other types of neutron stars. 

Models involving accretion from the ISM for the INS 

[e.g., 62] have essentially been ruled out as energeti-

cally important: the high velocities {^ 200 km s^^) in-

ferred for RX JI856 and RX J0720 from their proper 

motions and parallaxes [15, 24] make Bondi-Hoyle ac-

cretion {M <x v^^) very improbable, especially with the 

ISM density for RX JI856 inferred from the Ha neb-

ula [54]. We can then examine accretion from a fossil 
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Figure 2.2: Spectrum of three isolated NSs. Color points are the data. The dashed line is an unabsorbed Black
Body. The solid line is a Black Body plus ISM absorption.

Figure 2.3: Surface temperature of NSs vs magnetic field

The complete ionization energy for an
atom of charge Z, is Eion = 13.6Z2eV,
corresponding to typical ionization tem-
perature of 105K for H, 4 × 105K for
He, 4 × 106K for C, up to ∼ 108K
for Fe. Obviously at the typical sur-
face temperatures of NSs, light elements
up to C-N-O are fully ionized. Heav-
ier elements might still be partly ion-
ized.

For an isothermal neutrally charged atmosphere, in hydrostatic equi-
librium, the density ρ has an exponential profile with the high h:

ρ(h) =
A

Z
mpne =

A

Z
mpne(ho)e

(h−ho)/H , (2.49)

where A if the atomic number of the element forming the atmo-
sphere (1 for H, 4 for He, 12 for C), mp is the proton mass, ne is
the electron number density, ho is a reference high, and H is the
scale-high of the atmosphere (see Fig. 2.4).

It is found that H = kT/Ampg where k is the Boltzmann constant,
T the temperature, and g the surface gravity. At the NS surface g ≈
GMNS/R

2
NS ≈ 6.6×10−8 3×1033

1012 cm s−2 ≈ 2 × 1014cm s−2, and the
typical scale-high is H ≈ 0.5A−1cm.

g

0.5 1.0 1.5 2.0 2.5
Ρ�Ρo

-1

1

2

3

h - ho

H

Figure 2.4: Density profile in an
exponential atmosphere

The typical density at the photosphere can be estimated recalling that the photosphere is defined requiring its optical
depth to be unity: neσTH = 1, where we have assumed the opacity to be due to Thompson scattering. This gives
ne = 3A × 1024cm−3 corresponding to ρ = 2.5AZA g cm−3 ≈ 5A g cm−3. For a He-C atmosphere the density
reaches values ∼ 104 − 105g cm−3 in less than one cm.
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2.3 Degeneracy and Ionization

Matter at high density is properly described by the Fermi-Dirac statistics. The characteristic energy scale is the so
called Fermi energy EF, related to the Fermi momentum PF. For electrons it is:

EF =

{
P 2

F

2me
=
(

~2

2me

)
(3π2ne)

2/3 if EF � mec
2

cPF = (~c)(3π2ne)
1/3 if EF � mec

2
(2.50)

The transition from the Non-Relativistic to the Relativistic regime takes place where:

(3π2ne)
1/3 ≈

(
2mec

~

)
⇒ ne ≈

1

3π2

(
2mec

~

)3

≈ 4.7× 1030cm−3 (2.51)

⇒ ρ ≈ A

Z
mpne ≈ 1.6× 107g cm−3 (2.52)

One defines the Fermi temperature TF as the temperature where thermal energy equals the Fermi energy:

kTF =


(

~2

2me

)(
3π2Zρ
Amp

)2/3

= 2.6× 10−11ρ2/3 if ρ� 1.6× 107g cm−3

(~c)
(

3π2Zρ
Amp

)1/3

= 6.5× 10−9ρ1/3 if ρ� 1.6× 107g cm−3
(2.53)

or:

(
kTF

1keV

)
=

1.6× 10−2
(

ρ
1g cm−3

)2/3

≈ 1.6
(

ρ
103g cm−3

)2/3

if ρ� 1.6× 107g cm−3

4.1
(

ρ
1g cm−3

)1/3

≈ 41
(

ρ
103g cm−3

)1/3

if ρ� 1.6× 107g cm−3
(2.54)

It is immediately evident that electrons will always be degenerate, already in the NS outer layers at the base of the
atmosphere. They will also rapidly become relativistic.

We can repeat the same arguments for the nuclei, just substituting ne → ni and me → Amp. The transition from
the relativistic to the non relativistic regime takes place at:

ni ≈
1

3π2

(
2Ampc

~

)3

⇒ ρ ≈ Amp

3π2

(
2Ampc

~

)3

= 5× 1016A4g cm−3 (2.55)

much larger than the typical average density of a NS. Nuclei, protons and neutrons will always be non relativistic
inside NSs.

On the other hand the Fermi temperature of the nuclei is:(
kTF

1keV

)
= 9× 10−4A−5/3

(
ρ

103g cm−3

)2/3

⇒ 1.1× 10−6

(
ρ

103g cm−3

)2/3

for Fe (2.56)

at the typical temperatures of the outer layers of NSs, degeneracy for the nuclei requires densities ≈ 1012g cm−3,
far larger that the values in the outer crust. Nuclei can be dealt with as non degenerate thermal particles, obeying
classical dynamics.

Interestingly at densities ≈ 108g cm−3 the Fermi energy of electrons reaches a value of ≈ 1.5 Mev which corre-
sponds to the mass difference between neutron and proton mn −mp = 1.3 Mev. At such densities electrons have
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enough energy for inverse β decay. The electron number is no longer a conserved quantity, and nuclei become
progressively more neutron rich.

Because of degeneracy, at high densities electrons can behave as free particles even at small temperatures. One can
compare the Coulomb interaction energy between electrons and nuclei, to the Fermi energy of electrons. Assuming
that the typical electron-nucleus distance is ≈ n−1/3

i , the ratio of the Coulomb energy to the Fermi energy is:

EC

EF
=

Ze2n
1/3
i

(3π2ne)2/3

2me

~2
≈ 0.07Z

(
Aρ

103g cm−3

)−1/3

(2.57)

In the case of Fe, such ratio is equal to unity at ρ ≈ 1× 102g cm−3. At ρ ≈ 105g cm−3 the ratio is already ∼ 0.1,
and saturates in the relativistic regime to ∼ 0.01. This suggests that the Coulomb interaction with nuclei can be
neglected to a first approximation.

At high density matter will behave as if it is fully ionized even if the thermal temperature is below the ionization
threshold. The full ionization energy for a nucleus of charge Z is Z2e2/2ao. The Fermi energy of electrons will
be equal to the full ionization energy when:(

~2

2me

)
(3π2ne)

2/3 =
Z2e2

2ao
⇒ n−1/3

e ' 3aoZ
−1 (2.58)

This implies that the average distance between electrons becomes smaller than the typical size of the orbital of the
last bound electron, which is just Z−1ao.

n−1/3
e =

(
ρ

Amp

)−1/3

' aoZ−1 ⇒ ρ ' AZ2mp

a3
o

≈ AZ2g cm−3 (2.59)

corresponding to a density ρ ' 2× 104g cm−3 for Fe.

2.4 Gas - Liquid - Solid

The above discussion makes clear that at the densities of interest between 105 and 108g cm−3, the electrons form a
fully degenerate Fermi gas, behaving as free particles. The nuclei on the other hand are fully ionized, and behaves
as classical thermal particles.

The condition for nuclei to behave as a gas is that their thermal energy should exceed the energy of the mutual
Coulomb interaction. Such energy is dominated by the closest neighbors, given that the background of free elec-
trons shields the contribution from distant charges. Such a system is known as One Component Plasma (OCP).

For a nucleus of charge Z, the transition from the gas phase to condensed (liquid or solid) phase takes place when
the internuclear distance do ≈ 4πn

−1/3
i /3 is such that :

Z2e2

do
= kT ⇒

(
Z2e2

kT

)(
4π

3
ni

)1/3

=

(
Z2e2

kT

)(
4π

3Amp
ρ

)1/3

= Γi = 1 (2.60)
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For Γi � 1 one has a gas while for Γi � 1 one has a solid. For Fe the transition takes place when:(
1keV

kT

)(
ρ

103g cm−3

)1/3

= 35 (2.61)

which shows that the nuclei are always in a condensed phase.

Determining the transition from liquid to solid, the so called crystallization/melting threshold, is not as simple,
because solids and liquids are both phases where the mutual Coulomb interaction energy of nuclei is bigger than
the thermal energy, and in general of similar magnitudes. Such transition cannot be determined from simple
analytical arguments based on orders of magnitude. There are however empirical criteria, based on experiments
with alcali metals that can be used to a first approximation.

Theoretically, statistical models are used. From Montecarlo simulations of OCP it is found that the solid to liquid
transition takes place for Γi ' 150. The Coulomb energy is about two orders of magnitude larger than the
thermal energy. This implies that the amplitude of the thermal oscillations is about 1/10 of the average internuclear
distance.

2.4.1 Modeling melting OCP

We describe here briefly the technique that is used to estimate the value Γi ' 150. The OCP is modelleld as a set of
nuclei of charge Z embedded into a neutralizing uniform electron background. Each nucleus has a potential energy
that is given by the Coulomb interaction energy with the other nuclei and with the background. The electrostatic
potential Φ is computed according to:

∇2Φ(r) = 4πρc(r) with ρc(r) = Ze

 N∑
j=1

δ(r− rj)−
N

V

 (2.62)

where the sum is done over the N other nuclei at locations rj . It is found that only the nearest neighbors contribute
to the energy, given the neutralizing background. It is possible to use a limited number of ions (N ' 200 and
imposing periodicity) to obtain converged results.

The Montecarlo technique consists in the following steps:

One choses an initial distribution for the nuclei (for
example a BCC lattice that minimizes the interaction
energy, but one can even chose or a random one),
and compute the initial potential energy of the entire
set of nuclei.

A random nucleus is displaced by a random amount
and the energy of the new configuration is computed,
(Fig. 2.5).

If the energy is lower than the previous one, the con-
figuration is accepted. If it is greater by an amount
∆ then it is accepted with probability e−∆/kT . Oth-
erwise it is rejected.

The procedure is repeated and new configurations
are obtained.

Figure 2.5: Displacement of a nucleus. Evo-
lution toward equilibrium of the energy of the
configurations for Γi = 10
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One can compute statistical quantities for each configuration, like the total potential energy, and in general one finds
that, after an initial relaxation, the configurations settle into a regime where global quantities remain constant, inde-
pendent of the initial configuration, as shown in Fig. 2.5. It means that the system has reached its thermodynamic
equilibrium.

A quantity of interest is the mean displacement from the original position. If the conditions (the value of Γi) imply
a solid, one expects that the nuclei should settle to their final position and at most oscillate around them. The
displacement should saturate to a finite value. For a liquid instead one expects the nuclei to keep moving around,
and the displacement should increase indefinitely. The value of Γi at which this happens traces the transition from
solid-crystal to liquid. It is found that this value is Γi ' 150.

Another quantity of interest is the distribution function of the nuclei, as a function of their separation. For gas this
should be uniform, apart from a repulsive core at very short range, where electron shielding is ineffective. For a
cristal at zero temperature, without thermal oscillations, this should be discrete, and different from 0 only for the
separations characteristic of the lattice structure. A liquid is expected, to have an intermediate behavior, as shown
in Fig. 2.6.

Figure 2.6: Nuclei distribution as a function of relative distance.

2.5 Phase Diagram of Outer Crust

The conditions in the outer crust of a NS can be summarized in the phase diagram shown in Fig. 2.7 where
conditions of matter at high density and temperature is shown. The conditions in the outer crust correspond to
densities in the range 105 to 108 g cm−3, and typical temperatures ranging from 0.1keV to about 1keV.

The pressure in the outer crust is provided almost completely by non relativistic degenerate electrons. Relativistic
conditions are reached only at the highest density, when electron capture by inverse β-decay becomes important. At
low density, below 105 g cm−3, Coulomb corrections become important. Coulomb attraction reduces the pressure
with respect to the case of free electrons. At 103 g cm−3 the pressure is about half the value for completely free
degenerate electrons.

2.6 Neutronization and the Liquid Drop Model

At a density of ≈ 108 g cm−3, the Fermi energy of electrons exceeds the mass difference between neutron and
proton, and electron capture is possible. In practice electron capture becomes a relevant process already at densities
of ∼ 107 g cm−3, because the relevant energy threshold is that for inverse β-decay of 56Fe.
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Figure 2.7: Phase diagram of matter at high densities and temperatures typical of the outer layers of the crust of a
NS. In orange shaded area electrons are degenerate. Eion are the thermal full ionization energies. Dashed vertical
lines define the density threshold for pressure ionization of where the Coulomb energy is only 0.1 of the kinetic
energy of electrons. The dotted vertical line is the density limit for inverse β-decay. The solid lines indicate the
transition from gas to liquid to solid, for the ions in the crust.

To study how neutronization proceeds at densities above ∼ 107 g cm−3 one needs a model telling how the energy
of the nuclei depends on the number of neutrons and protons. The simplest of such model is the so called Liquid
Drop Model, where the nuclear energy is given by the semi-empirical mass formula. A nucleus of atomic number
A and proton number Z, has a total energy given by:

Enuc = mn(A− Z)c2 +mpc
2Z + Eb + Ec + Es (2.63)

where mn is the neutron mass, mp the proton mass, Eb the nuclear droplet energy, Ec the Coulomb electrostatic
energy, and Es the Symmetry energy. In the Liquid Drop Model, the nucleus is treated as a uniform sphere of size
Rn = A1/3ro, where ro is the typical nucleon size ro ≈ 10−16 cm = 0.1 fm. The Coulomb energy, can be simply
estimated to be equal to the electrostatic energy of a uniformly charged sphere of charge Ze, and radius equal to
Rn;

Ec = 4π

∫ Rn

0

3Ze

4πR3
n

Zer3

R3
n

r2dr =
3

5

Z2e2

ro
A−1/3 = EcZ2A−1/3 ≈ 0.7Z2A−1/3MeV (2.64)

The symmetry energy, is what tends to favor an equal number of protons and neutrons in normal nuclei and is given
by:

Es = EsA
(

1− 2
Z

A

)2

≈ 24A

(
1− 2

Z

A

)2

MeV (2.65)

The droplet energy itself can be decomposed into a volume and surface term:

Eb = EvA+ EσA2/3 ≈ 34A+ 12A2/3MeV (2.66)
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At a given density ρ the energy density associated to the nuclei will be:

un =
ρ

Amu
Enuc (2.67)

where mu ≈ mp ≈ mn is the mean nucleon mass. At that same density the energy density associated with the
fully degenerate electrons will be:

ue =
Zρ

Amu
EF (2.68)

such that the total energy will be

ut =
ρ

mu

(
mnc

2 + Yp(mp −mn)c2 + Ev + EσA−1/3 + EcY 2
p A

2/3 + Es
(

1− 2
Z

A

)2

+ YpEF

)
(2.69)

where Yp = Z/A is the proton fraction. The equilibrium nucleus (A,Z) is obtained minimizing this energy at a
fixed density. Notice that the density enters only through the electron Fermi energy EF .

The minimization proceeds in two steps. First one minimizes with respect to A, at constat Yp. In this case one
obtain the following condition;

EσA−4/3 = 2EcY 2
p A
−1/3 ⇒ A =

Eσ
2EcY 2

p

≈ 12

Y 2
p

(2.70)

This step corresponds to a minimization with respect to the strong interaction, that fixes the total nucleon number in
nuclei. It means that, having to chose between many light nuclei or a few massive ones (keeping the density fixed)
the favored nuclei are those that have minimal energy. It is interesting to compare this result with the criterion for
spontaneous fission. A nucleus will undergo spontaneous fission if its total energy is bigger that the total energy
of two separate nuclei having each half of the nucleon of the original one. Obviously the volume term ∝ A is the
same for both configurations (and similarly the Symmetry term), while the surface and Coulomb term change. The
condition for fission is then:

EσA2/3 + EcY 2
p A

5/3 ≥ 2(Eσ(A/2)2/3 + EcY 2
p (A/2)5/3) ⇒ A ≥ 0.7

Eσ
EcY 2

p

≈ 17

Y 2
p

(2.71)

and one sees that nuclei satisfying Eq. 2.70, are always stable for spontaneous fission.

The second step corresponds to a minimization with respect to Yp at fixed A. This represents a minimization with
respect to the weak interaction that is responsible for the exchange of protons into neutrons. Changing Yp at fixed
density means that a proton is exchanged into a neutron and viceversa; which obviously keeps A constant. If one
substitutes the result of Eq. 2.70 then:

(mp −mn)c2 + EF − 4Es(1− 2Yp) + (2E2
σEc)1/3Y −1/3

p = 0 (2.72)

Note that the above condition can be written in term of the so called chemical potentials:

µp + µe = µn (2.73)

where, using Eq. 2.69:

µp =
∂ut
∂np

= mpc
2 + Ev − Es(1− 2Yp)(3− 2Yp) + (2E2

σEc)1/3Y 2/3
p

(
1

2
+

1

Yp

)
µn =

∂ut
∂nn

= mnc
2 + Ev + Es(1− 4Y 2

p ) +
1

2
(2E2

σEc)1/3Y 2/3
p

µe =
∂ut
∂ne

= EF (2.74)
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The minimum condition, implies that the chemical potentials must be in equilibrium. The chemical potentials
represent the amount of energy necessary to increase by one the number respectively of free electrons, protons and
neutrons in the nuclei. It must cost the same energy to add a neutron or a couple electron-proton to the system.

Eq. 2.72 establishes a relation between the density, that enters the electron Fermi energy according to Eq.2.50, and
the nuclear proton fraction. The results of Eqs.2.70-2.72 are shown in Fig. 2.8.

Figure 2.8: Evolution of the proton fraction Z/A and the atomic number A as a function of density. Typical nuclei
are shown for densities ∼ 108 − 109 g cm −3, and then for density ∼ 4× 1011 g cm −3. At intermediate value the
existence of magic number alters the behavior of the curves.

Note that for simplicity one can assume that the electron Fermi energy is always given by the formula derived using
Z/A ≈ 0.5. This is not strictly true, however the Fermi energy scales as (Z/A)1/3, and in the range of interest this
effect is marginal.

More important is the fact that the semi-empirical mass formula, does not correctly reproduce the binding energy
of nuclei. It is well known that there are nuclear configurations characterized by so called magic numbers of
neutrons/protons, that are particularly stable. This is due to shell effects of the nucleon interaction inside nuclei.
Of particular importance for NS are the magic number 50 and 80. Indeed while the model we presented correctly
describes the neutronization (change in Yp), it fails to properly recover the correct nuclei (correct A) in the density
range 109 − 1011 g cm−3, exactly because at those densities nuclei are found with the neutron magic number 50
and 80.

2.7 Neutron Drip

At density ρ ∼ 4× 1011 g cm−3, the chemical potential of the neutrons satisfy:

µn =
∂ut
∂nn

= mnc
2 + Ev + Es(1− 4Y 2

p ) +
1

2
(2E2

σEc)1/3Y 2/3
p = 940Mev ≈ mnc

2 (2.75)
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Above this density it becomes energetically favorable to add an extra neutron as a free one, outside the nuclei,
instead of adding it to a nucleus. This conditions, and the related density, are known as neutron drip. Physically
speaking this corresponds to a phase transition: the matter ceases to be formed by nuclei surrounded by free
degenerate electrons, and free degenerate neutrons appear. However the pressure support at this pont is still due
to the free relativistic degenerate electrons. Further increasing the density, however, leads to an increase in the
number of free neutrons, that do not contribute much to the pressure. The electron pressure as a consequence does
not rise as much.

The neutron drip is considered the point where the crust begin to dissolve into the core which as we will see is
mostly formed by unbound nucleons. The density at neutron drip is about 10−3, of the nuclear density. This means
that the average separation of nuclei is about ten times their size.

At the neutron drip Z/A ∼ 0.3 and this implies that the electron pressure is about (0.3/0.5)4/3 ∼ 0.5 of what one
would have naively obtained, extrapolating the behavior of degenerate electrons for Iron nuclei, that we derived in
the previous chapter.

2.8 Above Neutron Drip

The model developed previoulsy to describe neutronization, can be easily extended to take into account the presence
of free neutrons beyond neutron drip. The total energy now will have to include the energy of the free neutrons,
which we can to first order describe as a fully degenerate, non relativistic fermion gas (relativity will set in at
densities above 1016 g cm−3). Recalling that now the desity includes the contribution from free neutrons:

uN =
ρ(1− Yn)

Amu
Enuc

ue =
Z(1− Yn)ρ

Amu
EF (2.76)

un =
Ynρ

mu
En

ut =
ρ(1− Yn)

mu(
mnc

2 + Yp(mp −mn)c2 + Ev + EσA−1/3 + EcY 2
p A

2/3 + Es
(

1− 2
Z

A

)2

+ YpEF +
Yn

1− Yn
En

)
(2.77)

where with Yn we have indicated the fraction of free neutrons with respect to bound nucleons and En is their
energy. At this point one preceeds as before, except that now one need to minimize also with respect to Yn. The
first step is a minimization with respect toA at fixed Yp and Yn. This has the same meening as discussed previously,
of selecting the most stable nucleus. The result is the same as before:

EσA−4/3 = 2EcY 2
p A
−1/3 ⇒ A =

Eσ
2EcY 2

p

≈ 12

Y 2
p

(2.78)

implying that even above neutron drip nuclei are still stable against spontaneous fission. Note that the presence of
free neutrons does not affect, in this simple model, the stability of the nuclei.
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Then one miminizes with respect to Yp at fixedA and Yn. One recovers the equilibrium conditions for the chemical
potentials, which again is the same as before:

µe + µp = µ(N)
n (2.79)

where the superscript (N) implies that those neutrons are inside nuclei. This again relates to a process where
a proton is exchanged for a neutron inside a nucleus. The result is again independent from the presence of free
neutrons.

And finally one minimizes with respect to Yn at fixed Yp. Note that if one keeps the density constant, one cannot
change Yn without affecting also A. Infact one has dA ∝ −dYn. This process in fact relates to the exchange of a
neutron between the nuclei and the outer gas, and obviously, a change in one correspond to an opposite change in
the other. What remains fixed in the process is actually the number of protons and of electrons. This is equivalent
to the statement that it costs the same energy to add a neutron to the nucleus or to add it as a free one. The energy
necessary to add a neutron to a nucleus at fixed Z is:

dEnuc

dA

∣∣∣∣
Z

= mnc
2 + Ev +

2Eσ
3A1/3

− EcZ
2

A4/3
+ Es

(
1− 4

Z2

A2

)
= EN (2.80)

The quantity EN −mnc
2 is nothing else than the Fermi energy for degenerate neutrons.

Now:

EF = ~c(3π2)1/3 ρ(1− Yn)Yp
mu

(2.81)

En = mnc
2 +

~2

2mn
(3π2)2/3 ρYn

mu
(2.82)

such that the equilibrium conditions become:

(mp −mn)c2 − 4Es(1− 2Yp) + (2E2
σEc)1/3Y −1/3

p = −~c(3π2)1/3

(
ρ(1− Yn)Yp

mu

)1/3

(2.83)

Ev +
1

3

(E2
σEc
4

)1/3

Y 2/3
p + Es

(
1− 4Y 2

p

)
=

~2

2mn
(3π2)2/3

(
ρYn
mu

)2/3

(2.84)

The resulsts are show in Fig. 2.9.

The free neutrons contribute to the density, and they also contribute to the pressure, so that the total pressure will
be:

P = Pe + Pn =
( c

4

)
(3π2~3)1/3

[
ρ

mu
Yp(1− Yn)

]4/3

+

(
1

5m

)
(3π2~3)2/3

[
ρ

mu
Yn

]5/3

(2.85)

In Fig.. 2.10 the pressure is shown as a functon of the density. At a density of∼ 4×1012 g cm−3, the free neutrons
contribute about one half of the density and one half of the pressure. From this point on the nuclei and free electrons
will be less and less important and to a good approximation matter will behave as a system of degenerate nucleons
and electrons, with neutrons providing most of the density and pressure support. Note moreover that just beyond
neutron drip, the total pressure rises much less with density than the n4/3 behaviour of the degenerate electron just
before it. The reason being that the increase in density is mostly associated with the appearence of free degenerate
neutrons, that do not contribute to the total pressure. The pressure will begin to rise as n5/3, after ρ ∼ 5× 1012 g
cm−3, once the free degenerate neutrons become the dominant contributor.

In Fig. 2.10 we show how pressure changes as a function of density above neutron drip, and the contribution from
electrons and neutrons separately. Immediately after the neutron drip the adiabatic coefficient drops from 4/3
typical of electron dominated pressure, to ∼ 0.5, to rise again to 5/3 once neutrons become dominant.
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Figure 2.9: Evolution of the freen neutron fraction Yn, the proton fraction Z/A in atoms, and the atomic number
A as a function of density, above neutron drip.

Figure 2.10: Pressure as a function of density above neuron drip. Solid dark line is the total pressure, the red line
if the electyron contribution, and the blue line the one from the fre neutrons.
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2.8.1 Corrections

The model we presented above is extremely simplified. While, apart from nuclear shell effects, it is quite accurate
below neutron drip, above that density, there are several effects that our model does not take into account, and that
become progressively stronger as the nucelar density ρnuc ∼ 2× 1014 g cm−3 is approached.

given that Yp keeps dropping (till it gets to value ∼ 0.1) one needs to take this into accont in the definition of
the electron Fermi energy.

one needs to correct the energy associated to the free neutrons. First the available volume for free neutrons
must be reduced by the volume occupied by the nuclei. This is only about 10−3 at neutron drip but reaches
value of order unity close to nucler density. Second the neutrons cannot be treated as free particles all the way
to nuclear density. The strong interaction has an attractive character that will begin to affect neutrons once
their typical distance is ∼ 0.1fm. This means that their energy rises sligthly less that for the completely free
case.

the energy of the nuclei cannot be decribed by the same semi-empirical mass formula, that is used for normal
nuclei surrounded by a vacuum,. First the Coulomb energy, which was originally derived taking into account
only the mutual interaction of protons belonging to the same nucleus, must be corrected to include now the
electrostatic interaction with nearby nuclei (a lattice correction), as well as the fact that for large nuclei,
electron penetration tends to reduce the electrostatic energy.

Ec =
3

5

Z2e2

ro
A−1/3 − 9

10

Z2e2

ro

[
ρ

ρn

]1/3
(

1− 5

9

[
ρ

ρn

]2/3
)

(2.86)

Second the surface energy must also be corrected for the presence of free neutrons outside. Free neutrons
reduce the surface energy. One expects that as the density of nucleons outside reaches the same value of the
density of nucleons inside the nuclei, the concept of a surface ceases to have a meaning. So the surface energy
should vanish when the neutron density outside reaches the same value as the one inside the nuclei. Third the
nuclei themself cannot be considerred as hard spheres, whose size grows proportional to A1/3. The presence
of free neutrons outside will exert a pressure on the nuclei, and their volume will be compressed with respect
to a case in vacuum. Such compression will alter the nuclear binding energy. Fourth, as the nuclei become
progressively more neutron reach, the values of the various coefficient in the semiempirical mass formula will
not be accurate any longer, and one will have to resort to better models for the energy of nuclear matter, that
take into account also how it depends on Yp.

2.9 The Core

We saw that starting from a density ρ ∼ 5× 1012 g cm−3 the mass and pressure are dominated by the free neutron
gas. The average distance of nuclei is just four times their size. Once nuclear densities are reached one expects that
the nuclei will dissolve into a uniform background of neutrons protons and electrons. To a first approximation one
could think of treating such system as composed by a fermi gas of fully degenerate protons neutrons and electrons,
recalling that at the typical nuclear density neutrons and protons are still sub-relativistic. Such simplified models
can be used to get an idea of the possible behavior of nuclear matter, but it is well known that it gives wrong
quantitative results.
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One can get a much better understanding of the physical conditions, starting from the liquid drop model for nuclei.
Once nuclei are fully dissolved into a uniform fluid of nucleons and electrons the energy density will be:

ut =
ρ

mu

(
mnc

2 +Xp(mp −mn)c2 + Ev + Es (1− 2Xp)
2

+XpEF

)
(2.87)

where the main difference with respect to Eq. 2.69 is that now there is no surface term, given that we are dealing
with a uniform fluid, and no Coulomb term because the uniform distribution of protons and electrons implies
charge neutrality. Now Xp is the total proton fraction. At density ρ ∼ 5 × 1012 g cm−3, the total proton fraction
is Xp = (1− Yn)Yp ≈ 0.06. Differentiating with respect to Xp at fixed density one find the chemical equilibrium
condition:

(mn −mp)c
2 + 4Es (1− 2Xp) = EF = ~c(3π2)1/3 ρXp

mu
(2.88)

which can be soved for Xp. At density close to the nuclear density ρ ≈ 2 × 1014 g cm−3, one finds Xp ≈ 0.03.
In general the coefficient in Eq. 2.69 are themselves a function of the density. For example Es is known to increase
above nuclear density. As a consequence above nuclear density the proton fraction increases again, and it can be
as much as twice bigger around ρ ≈ 5× 1014 g cm−3.

Modeling the nucleon fluid as a systems of free degenerate fermions (which as we remarked before is not correct),
in the limit of very high density, when also baryons become relativistic, one has:

µn = (~c)(3π2nn)1/3 = (~c)(3π2ne)
1/3 + (~c)(3π2nP )1/3 = µe + µp ⇒ n1/3

n = 2n1/3
p (2.89)

The solution provides the asymptotic value for the proton fraction: np/nn = 1/8 ⇒ Xp = 0.1 that is the reason
why these objects are often assumed to be formed almost exclusively by neutrons. These small proton fractions are
very important because they guarantee the presence inside the NS of charged particles that can carry currents, and
support the presence of a magnetic field.

However as shown in Chapter 3.2 a NS cannot be described as a system of free fermions, because they fail to
reproduce the correct masses. The reason is that at and above nuclear density, nucleons cannot be treated as free.
The strong interaction has a hard repulsive core, whose effect becomes important once the typical nucleon density
becomes ∼ 4 × 1014g cm−3. This causes a stiffening of the pressure, that rises more rapidly with density than in
the free case.

A very simple model of the effect of the hard core of nuclear interaction can be obtained using a model based on
Yukawa potentials.

The hard core is modelled using a potential of the form:

V (r) = g
e−kr

r
(2.90)

the effect of this potential on the total energy of the nucleon gas can be estimated as follows. The total energy will
be the sum of the kinetic term and the potential term. The potential term of the fluid is just the sum of the potential
energy for each pair of nucleons. If the baryons are treated as a uniform fluid with density n, for a single nucleon
the interaction energy will be given by the integral of the potential energy over the rest of the baryon fluid:

4π

∫
V
ng
Ee−kr

r
r2dr =

4πg

k2
n =∝ n (2.91)
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so that the total potential energy density will be 4πgn2/k2. The total energy will then be:

E =
~2

2mu
(3π2)2/3n5/3 +

4πg

k2
n2 (2.92)

Where we have assumed non relativistic degenerate nucleons. The value of g and k depend on the properties of the
repulsive core. The pressure of the baryon fluid can be obtained recalling that at zero temperature dE = PdV ⇒
P = n(∂E/∂n), leading to:

P ≈ (3π2~3)2/3

mu
n5/3 +

4πg

k2
n2 (2.93)

which shows that as the density increases the term due to the potential becomes progressively more important and
the adiabatic index goes to 2. This stiffening of the Equation of State leads to masses in excess of 1.4M�.

2.9.1 Higher densities

As we saw in the previous discussion, as the density increase it becomes energetically favorable for the system to
include states/particles, that in normal conditions would be unstable. This happens first for neutron rich nuclei,
that can exist for densities above ∼ 108 g cm−3, and that would be normally unstable for beta decay. Then
above 4 × 1011 g cm−3, also free neutrons can exist. One immediately sees that as the chemical potentials of the
various component increase, it becomes possible to have particles that in normal conditions would decay in those
constituents. The spontaneous decay relation X + Y → Z implies that the system will contain particle Z if the
chemical potentials satisfy µX + µY = µZ ≈ mZ . For example at densities of the order of 3× 1014 g cm−3, the
electron chemical potential (its Fermi energy) reaches ≈ 105 MeV, which is comparable to the mass of the muon,
so that muons will start to appear. This is the reason why the physics of such very high super-nuclear density is so
complex, because many different new particles can appear depending on the how the chemical potentials behave.





CHAPTER 3

POLYTROPIC MODELS FOR
NEUTRON STARS

Here we present simple polytropic models both for classical and general relativistic configurations. We will show
the existence of a maximum mass, and discuss how observations of Neutron Stars, can constrain the mass-radius
relationship.

3.1 Lane-Emden Equation and the Classical Polytropic Model

For a degenerate system, the pressure is just a function of the density. The equation of state in this case is said
to be barotropic. Among all barotropic cases, a polytropic equation of state is such that the pressure p is related
to the density as p = Kργ , where γ is known as the adiabatic index. In this case the equation describing the
self-gravitating hydrostatic equilibrium for a non-rotating system can be cast into a simplified form, that allows
self-similar solutions.

Assuming an equation of stare in the form p = Kρ1+1/n [corresponding to n = 1/(γ − 1)], the hydrostatic
equilibrium condition reads:

∂p(r)

∂r
= −GM(r)ρ(r)

r2
⇒ Kρ(r)1/nn+ 1

n

∂ρ(r)

∂r
= −GM(r)ρ(r)

r2
. (3.1)

The mass equation is:

M(r) = 4π

∫ r

o

ρ(r′)r′2dr′ ⇒ ∂M(r)

∂r
= 4πρ(r)r2. (3.2)

Further differentiating Eq.3.1 one gets:

4πGρ(r) =
K

r2

∂

∂r

(
r2ρ(r)(1−n)/nn+ 1

n

∂ρ(r)

∂r

)
(3.3)

We introduce the following variable θ such that ρ = ρcθ
n, then:

−4πGρcθ
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Kρ
1/n
c

r2

∂

∂r

(
r2θ(1−n)(n+ 1)θ(n−1) ∂θ
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r2
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∂r

(
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∂θ

∂r

)
(3.4)
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with the substitution ξ = ar with a2 = (n+ 1)Kρ
1/n−1
c /(4πG) the equation can be cast in adimensional form:

− 4πGa2

(n+ 1)Kρ
1/n−1
c

θn =
1

r2

∂

∂r

(
r2 ∂θ

∂r

)
⇒ −θn =

1

ξ2

∂

∂ξ

(
ξ2 ∂θ

∂ξ

)
(3.5)

This is known as Lane-Emden Equation. It is a second order differential equation, and must be solved subject to
the following boundary conditions at the center θ(ξ = 0) = 1 and ∂ξθ(ξ = 0) = 0. The first condition uses the
freedom of scale, and the second condition follows from symmetry with respect to r = 0, so that ∂rp = 0 at r = 0.
The solutions for non relativistic degenerate fermions n = 1.5 (γ = 5/3) and for relativistic degenerate fermions
n = 3 (γ = 1/3) are shown in Fig. 3.1. The point where θ = 0 is the stellar radius R. One finds:

R =

3.6
(

2.5Kρ−1/3
c

4πG

)1/2

for γ = 5/3

6.8
(

4Kρ−2/3
c

4πG

)1/2

for γ = 4/3
(3.6)

Note that the higher the central density the smaller the stellar radius.

Figure 3.1: Solutions of the Lane-Emden Equation for a system of fully degenerate fermions, both in the relativistic
and non-relativistic regime.

3.1.1 Chandrasekhar Mass

In the same way it is possible to derive the stellar mass. One has:

M(r) = 4π

∫ r

o

ρ(r′)r′2dr′ ⇒ M(ξ) = 4π

∫ ξ

o

ρca
3/2θ(ξ′)nξ′2dξ′ (3.7)

recalling Eq.3.5 one has:

M(ξ) = −4π

∫ ξ

o

ρca
3/2 ∂
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ξ2 ∂θ
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)
dξ′ ⇒ M(ξ) = −4π

[
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]3/2

ρ(3−n)/(2n)
c ξ2 ∂θ

∂ξ
(3.8)
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The stellar mass is given by taking the value of ξ and the derivative of θ at the surface.

M =

{
10.8π

[
5K
8πG

]3/2
ρ

1/2
c for γ = 5/3

7.6π
[
K
πG

]3/2
for γ = 4/3

(3.9)

Note two importnat properties:

for γ = 5/3 the stellar mass and radius are related as R ∝ M−1/3. More massive stars have smaller radii.
This implies that as the total mass increases so does the central density.

R = 5

[
K

G

]
π−2/3M−1/3 (3.10)

when the density reaches the value where the degenerate particles become relativistic the mass saturates to a
finite value, independent of its radius. Such value is known as the Chandrasekhar Mass Mch. There are no
solutions with higher mass, so this must be considered as un upper limit for degenerate stars.

For WDs with typical densities of the order of ρc ∼ 105 g cm−3, electrons are in the non relativistic limit (which
is reached at densities ∼ 106−7 g cm−3), and the mass radius relation reads:

R

R�
= 0.0012

(
M

M�

)−1/3

⇒ R ≈ 1000km (3.11)

where we have assumed 2 baryons per electron. While the Chandrasekhar Mass derived in the relativistic limit is:

Mch = 1.38M� (3.12)

If one considers a NS, with central density of the order of, or slightly above, nuclear density ρc ∼ 1015 g cm−3,
then one finds that the pressure support is due to non relativistic degenerate neutrons (the relativistic limit sets in
at density ∼ 1016 g cm−3) the mass radius relation is:

R

R�
= 2× 10−5

(
M

M�

)−1/3

⇒ R ≈ 15km (3.13)

where we have assumed 1 baryon per neutron. While the Chandrasekhar Mass is:

Mch = 5.5M� (3.14)

Note however that for NSs such estimates are only correct within an order of magnitude (the difference with respect
to a WD supported by electrons is due solely to the fact that there is one electron per two baryons). The radii that
are found are comparable in magnitude with the Schwarzschild radius and this implies that general relativistic
corrections cannot be neglected.

3.2 TOV equations

We begin by recalling the two main equation defining the TOV equilibrium. The equation for the included mass is:

d

dr
[r(1− e−2λ)] = 8πr2ε ⇒ e−2λ = 1− 2M(r)

r
with M(r) = 4π

∫ r

o

εr2dr (3.15)
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Outside the star the quantityM is a constant, that in the weak field limit coincides with the Newtonian gravitational
mass of the star.

The TOV equilibrium is given by:

dp

dr
= − [p(r) + ε(r)][M(r) + 4πr3p(r)]

r(r − 2M(r))
(3.16)

3.2.1 Constant Density Model

The TOV equation introduces several non-linearities due to GR effects and the fact that now the internal energy
contributes to the mass and inertia. This prevents a simple renormalization (adimensionalization) as it was done
for the Lane-Emden equation.

Instead the TOV must be solved as an initial value ODE, given a central density (energy density or barion density).
Realistic EoS can only be handled numerically. However it is possible to derive a simple solution in the simple
case of constant energy density ε = εo (corresponding to a stiff equation of state, large variations of pressure are
associated with weak variations of density). The energy density usually contains the rest mass density (associated
with the baryon number density) and the internal energy density.

Eq. 3.15 integrates trivially:

M(r) =
4π

3
εor

3 M =
4π

3
εoR

3. (3.17)

These stars follow a M ∝ R3 mass-radius relation, with the proportionality coefficient dependent on the energy
density.

The TOV equation is:

dp

dr
= −4πr3

3

[p(r) + εo][εo + 3p(r)]

r(r − 8πεor3/3)
= −4πr

3

[p(r) + εo][εo + 3p(r)]

(1− 8πεor2/3)
(3.18)

that can be rearranged and integrated to:

−
∫ R
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(3.19)

Recalling that at the surface p(R) = 0, one has:
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p(r) + εo
3p(r) + εo

=

√
1− 8πεoR2

1− 8πεor2
=

√
1− 2M/R

1− 2Mr2/R3
(3.22)



MASS AND RADIUS 39

which solves to:

p(r)

εo
=

[ √
1− 2M/R−

√
1− 2Mr2/R3√

1− 2Mr2/R3 − 3
√

1− 2M/R

]
(3.23)

From Eq. 3.22 one also finds, in terms of the central pressure pc:

2M

R
= 1−

[
pc + εo
3pc + εo

]2

(3.24)

This can be used to express the ratio M/R as a function of the central pressure. Assuming pc = ηεo, and ξ = r/R
Eq. 3.23 becomes:

p(r)

εo
=

1 + η −
√

(1 + 3η)2 − 4η(1 + 2η)ξ2

−3− 3η +
√

(1 + 3η)2 − 4η(1 + 2η)ξ2
→ η(1− ξ2) for η � 1 (3.25)

3.2.2 Polytropic Model

Assuming the NS to be composed only of fully degenerate, non-relativistic neutrons (relativity sets in above 1016

g cm−3, while typical central density in NSs do not exceed a few 1015 g cm−3) , one can use for the pressure the
result of Eq.2.40. The solution is only numerical, but in Fig. 3.2 we show the results, the total mass is plotted as a
function of the central density, and the mass-radius relation is shown.

Those results show that there is a maximum mass ≈ 0.8M� (the correct value using Eq. 2.48 is 0.7M�), that
is reached for central density 4 × 1015 g cm−3, corresponding to a radius of 8 km. Above this density solutions
are unstable, so the are no stable configurations in the relativistic regime. For stable configurations M ≈ [1 −
(R/30km)]M�.

It is immediately evident that the maximum mass derived in this regime is smaller than the Chandrasekhar Mass
for WDs. This implies a formation bottleneck. The degenerate iron core of Red Supergiant Star, will collapse to
form a NS only once its mass becomes bigger that the Chandrasekhar limit. But total mass is conserved during
collapse, so it is impossible, for the collapsing iron core, to reach a stable NS configuration.

The solution of this problem was obtained only in the ′50, once it was realized that at the typical densities of NS, the
average distance of neutrons is so small that the relative strong attraction cannot be neglected, and neutrons cannot
be treated as free fermions. More realistic EoS lead to maximum mass ∼ 1.7 − 2.0M� solving the bottleneck
problem.

3.3 Mass and Radius

Fig. 3.3 shows the measured masses of NSs. As in the case of other astrophysical objects, measurements of mass
are possible only in binary systems, once the orbital properties of the NS and its companion are known. NSs do not
have spectral features (lines) whose Doppler modulation due to the orbital motion can be measured. However there
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Figure 3.2: Solutions of the TOV Equation for a system of fully degenerate neutrons in the non-relativistic regime.
Left panel: mass as a function of central density. Right panel: mass as a function of radius

is a class of NS known as Pulsars (see Chapter 1) that produce a highly periodic radio pulsed emission, that can be
timed with high accuracy. The orbital modulation of this pulsed emission can be used to reconstruct the orbit and
hence the mass. If the companion is a Main Sequence star or a WD, its mass can be derived from his spectrum.
Sometimes the companion is another NS (in the case of PSR J0737-3039 detectable also as a pulsar). The timing
accuracy is nowadays so high that one can also measure GR deviations from the Newtonian orbit: precession
of periastron, orbital decay due to gravitational wave emission, etc.... These post-Newtonian corrections offer
independent estimates of the masses (in addition to the classical Newtonian orbital parameters), that can fix the
masses in a binary system even if the companion is unseen. The highest measured mass is ≈ 2M� for PSR
J0348+0432 and PSR J1614−2230.
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Figure 1. Example photospheric radius-expansion bursts from
4U 1636−536 (left panels) and EXO 0748−676 (right panels).
From top to bottom, the panels in each column show the bolo-
metric luminosity (units of 1038 erg s−1); blackbody temper-
ature (keV); and blackbody radius (km). The luminosity and
blackbody radii are calculated for a distance to 4U 1636−536
of 6 kpc (Galloway et al. 2006), and to EXO 0748−676 of 7.4 kpc
(Galloway et al. 2008). The open circles indicate the time of peak
burst flux, while the open diamonds indicate the time when the
photosphere is assumed to have just returned to the neutron star
surface (the “touchdown” point). Note that the flux at touchdown
Ft for 4U 1636−536 is essentially identical to the maximum flux,
while for EXO 0748−676 it is approximately half that value.

seven sources listed above (excluding Cyg X-2) all exhibit
regular X-ray dips (see e.g. Liu et al. 2001) attributable to
absorption from structures in the accretion disk, occuring at
preferential orbital phases. Since the accretion disk is usu-
ally thought to have limited vertical extent, the presence of
dips is normally taken as an indication of high system incli-
nation, i.e., i ≈ 90◦. We thus conclude that systematically
large f -values overwhelmingly (but not exclusively) occur
in bursts from systems with high inclination; we discuss the
remaining example, Cyg X-2, in §4.

We thus divided the sample between dipping and non-
dipping sources, and calculated the combined distribution
of f from each sample (Fig. 2). While there is substantial
overlap between the two distributions, the preponderance of
bursts with f ≈ 1 for the non-dipping sources makes the
two distributions highly discrepant. The K-S test value for
the two samples is 0.886, with associated probability 2 ×
10−21; this indicates unambiguously that the two samples
arise from different populations. For the dippers, the mean
f = 2.1±0.9, so that the flux at touchdown was, on average,
less than half the maximum flux.

Figure 2. The distribution of f = Fp/Ft, the ratio of the peak
flux to the touchdown flux, for 246 radius-expansion bursts in
our sample. The sample has been divided based on the source
type; we plot the distribution for the dippers (EXO 0748−676,
MXB 1659−298, 4U 1916−053, GRS 1747−312, XTE J1710−281
and 4U 1746−37, solid histogram) separately from the non-
dipping sources (dotted histogram). The overwhelming majority
of bursts from the non-dipping sources have f < 1.2; we have
indicated this in the histogram by labelling the first bin (which
is cut off) with the data value. The inset shows the three bursts
with f > 4 at the extreme end of the f distribution. Note that
the only non-dipping source producing bursts with f > 1.6 is
Cyg X-2.

3.2 The effect of the maximum radius in dipping
sources

While the association of low touchdown fluxes with high
system inclination is clear, the underlying cause (as well
as the wide range of the f values for the dipping sources)
begs an explanation. The large f -range was most notable for
MXB 1659−298, where the f -values were between 1.3 and
5.1 for the 12 radius-expansion bursts in the sample.

The high end of the distribution in the ratio f is too
large to be explained by the change in the gravitational red-
shift during the expansion of the photosphere. For example,
for a 10 km, 2M# neutron star, the flux ratio arising from
redshift changes can be at most equal to 1.6. Instead, the
clear separation between the f -distributions of the dippers
and non-dippers strongly suggests a geometric origin of the
f -ratios.

A geometric interpretation is further supported by the
correlation between the ratio f observed in dippers and
the maximum radius attained by the photosphere during
the radius expansion episode (Figure 3). In order to calcu-
late the maximum radius, we corrected for the distance to
the dipping sources based (in the case of EXO 0748−676,
MXB 1659−298, 4U 1916−053 and XTE J1710−281) on
the distance derived from the peak flux of the PRE bursts
(Galloway et al. 2008). In the case of GRS 1747−312 and
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system inclination is clear, the underlying cause (as well
as the wide range of the f values for the dipping sources)
begs an explanation. The large f -range was most notable for
MXB 1659−298, where the f -values were between 1.3 and
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The high end of the distribution in the ratio f is too
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for a 10 km, 2M# neutron star, the flux ratio arising from
redshift changes can be at most equal to 1.6. Instead, the
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A geometric interpretation is further supported by the
correlation between the ratio f observed in dippers and
the maximum radius attained by the photosphere during
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Figure 3.3: Measured masses of NSs.

Measuring the radius of NSs is more complex. There is a very small group of NS (less than 10) known as Isolated
Neutron Star (INSs), that show an X-ray thermal emission, with a typical Black Body spectrum (see Fig. 2.2).
These are old isolated objects, with no evidence of magnetospheric activity, or accretion from a binary companion.
It is reasonable to expect that the emission we observe, come from the very surface. In this case, knowledge of
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the Black Body temperature Tbb, that can be derived from spectral fitting, and of their luminosity L can be used to
infer a radius Rbb from the Black Body relation L = 4πσSBR

2
bbT

4
bb, where σSB is the Stefan-Boltzmann constant.

However, the radii derived in this way are far too small (∼ 3− 5 km) to be compatible with NSs.

There are two possible reasons for this discrepancy: either emission is dominated by a hot spot on the NS surface,
such that Rbb is actually a measure of the spot size, or absorption in the NS atmosphere suppresses the emission,
with respect to a pure Black Body. Unfortunately the absence of spectral features does not allow us to derive the
atmospheric composition, and hence its absorption.

There are two further issues with INSs: the balck body spectrum inferred in X-ray is not compatible with their
optical emission, and the fact that they are isolated prevents the measure of their mass.

Mass and radii can be measured, in a sub-class of NSs, belonging to binary systems with a Main Sequence compan-
ion, from which they accrete matter. The densities and temperatures reached by the accreting matter as it deposits
on the NS surface, are so high that hydrogen nuclear burning takes place. Depending on the mass accretion rate,
in a few systems such burning can give rise to rapid outbursts. Some of these bursts can be so intense that the
luminosity reaches the Eddington limit:

LEdd =
4πGMmpc

σT
≈ 1.3× 1038

(
M

M�

)
erg s−1 (3.26)

where σT is the Thompson cross section. Once this limit is reached the accreting matter is lifted out by radiation
pressure.
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3.2 The effect of the maximum radius in dipping
sources

While the association of low touchdown fluxes with high
system inclination is clear, the underlying cause (as well
as the wide range of the f values for the dipping sources)
begs an explanation. The large f -range was most notable for
MXB 1659−298, where the f -values were between 1.3 and
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Figure 3.4: Luminosity, Black Body temperature and Black Body radius in an Eddington limited burst. The pink
area shows the first phase of shrinking photosphere, while the green area shown the second phase after touchdown
(the red line).

In these bursts one distinguishes two phases (Fig. 3.4): after a rapid rise, in the first phase the luminosity remains
almost constant for a few seconds and the Black Body temperature Tbb rises, then in the second phase the luminosity
steadily declines, and so does the Black Body temperature. The duration of the first phase is much longer than
the typical free falling time on a NS (∼

√
R3/GM ) which is ∼ a few ms. This implies that the photosphere

must be supported against gravity, which means that the luminosity must be close to the Eddington limit. As the
NS cools, following the initial nuclear burning burst, the photosphere will shrink until it relaxes back to the NS
surface (the touchdown). In the first phase the photospheric radius can be estimated from the Black Body relation
Ledd = 4πσSBR

2
phT

4
bb. The radius at touchdown is the NS radius. This is confirmed by the evolution of the second

phase when the luminosity is seen to decline as L ∝ T 4
bb, which implies a fixed size. The burst itself allows one to

derive a relation between mass and radius:

4πGMmp

σT
= 4πσSBR

2T 4
bb ⇒ M

R2
=
σTσSB
Gmp

T 4
bb (3.27)
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with quantities measured at touchdown. Together with orbital information from the binary system this can constrain
both mass and radius.

3.3.1 Constraints on the Mass-Radius relation

In the mass radius diagram there are regions than can be excluded based on theoretical constraints. This together
with measured masses and radii can be used to constrain the possible EoS, describing degenerate matter at super-
nuclear densities.

The first constraint comes from GR, and it is simply the statement that a NS must be bigger than its own Schwarzschild
radius:

R >
2GM

c2
(3.28)

Another constraint can be derived in the limit of infinite central pressure. From Eq. 3.24, setting pc � εo, one
finds:

Rc2

GM
=

9

4
⇒ R >

9GM

4c2
(3.29)

Finally the last constraint comes from causality. For a causal equation of state the sound speed c2s = dp/dε < 1.
Now at low density p < ε. So causality will be violated if at some higher density p = ε. Setting pc = εo thus
necessarily implies a causality violation. Again using Eq. 3.24, this requirement reads:

Rc2

GM
=

8

3
⇒ R >

8GM

3c2
(3.30)

These forbidden regions are shown in Fig. 3.5.

3.3.2 Mass Limits and Rotation

Observations also pose important constraints on the possible Equation of State. The existence of a NS with mass
≈ 2.0M� implies that only EoS giving mass radius relations that extend above that limit are allowed. On the other
hand there are a handful of Pulsars seen to spin with millisecond period. The fastest spinning PSR known is PSR
J1748-2446 with a frequency of 716 Hz, corresponding to a period of 1.4 ms.

The maximum rotation of a NS can be obtained setting the rotation frequency at the equator equal to the Keplerian
frequency. Unfortunately correct estimates require the knowledge of the structure of the rotating NS as well as the
metric of the spacetime. In a system with angular momentum, the metric outside the star cannot be described by the
Schwarzschild solution. The deviation of the metric from the spherically symmetric case, is given by the so called
Kerr parameter a = GIΩ2/(M1/2c2R−3/2), where I is the moment of inertia and Ω is the rotation rate. At the
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Figure 3.5: Mass radius diagram for NSs. Colored areas represent regions that are forbidden: GR limit (red);
infinite pressure limit (green), causality limit (blue). Green line is the maximum measured mass of a NS. Red line
is the Keplerian limit for the fastest spinning NS known.

surface of a typical NS (M ∼ 1.4M�, R ∼ 10 km, I = 1045 g cm2) the Kerr parameter is ∼ 0.1 for a millisecond
rotator. This implies that the metric outside the NS can be reasonably approximated by the Schwarzschild solution.
Recalling the formula of the Keplerian frequency in Kerr metric, one has:

Ω2
K =

GM

(R2 + a2)3/2
≈ GM

R3
for a� 1 (3.31)

Identical to the Newtonian case. On the other hand a star rotating at the keplerian speed, will be deformed into
an oblate ellipsoid. It is well known that for a system in hydrostatic equilibrium, the isobaric surfaces are also
isopotential ones. The stellar surface, will be an isopotential surface, where the effective gravity will now include
the centrifugal force. Assuming for simplicity the Newtonian regime, with the same gravitational potential as the
non rotating case, one has for the polar and equatorial radii Rp and Re respectively:

GM

Rp
=
GM

Re
+ 0.5ΩK(Re)

2R2
e =

3GM

2Re
⇒ Re = 3Rp/2 (3.32)

More accurate computations show that at mass sheddingRe ≈ 2Rp. It is possible at this point to define an effective
radius (the radius of a sphere having the same volume of the ellipsoid) R̃3 = R2

eRp ≈ 0.5R3
e , hence R̃ ≈ 0.8Re.

Using this value as a proxy for a non rotating star of the same volume (mass) in the mass radius diagram (where
EoS are usually plotted for non rotating systems) one gets a corrected Keplerian formula:

Ω2
K ≈ 0.5

GM

R̃3
ΩK ' 9000Hz

(
M

M�

)1/2(
10km

R

)3/2

(3.33)

More accurate numerical models, in full GR, give a coefficient ∼ 0.4. Setting this equal to the observed frequency
allows one to define another curve in the mass radius plane that any realistic EoS must cross.





CHAPTER 4

PULSAR ELECTRODYNAMICS

In this chapter we will investigate the Electrodynamics of Pulsars (PSRs). We will show that, for typical PSR
conditions, a magnetosphere forms above the Neutron Star (NS) surface, and the conditions in the magnetosphere
are such that an outflow develops, which exerts a torque on the star.

4.1 Spinning Dipole and the Lighthouse model

It was immediately suggested, soon after their discovery, that PSR could be understood as rotating NSs endowed
with a magnetic field, and that the properties of their emission and slowing down could be due to the magnetic field
itself.

The simplest model is to assume that the rotating NS is endowed with a dipolar magnetic field. A rotating dipole
is known to emit EM radiation. The energy emitted per unit time is simply given by the Larmor formula:

W =
2

3

µ̈2

c3
(4.1)

where µ is the magnetic dipole moment. For a NS with radius RNS ∼ 106 cm and magnetic field BNS, the dipole
moment is R3

NSBNS. If the magnetic axis is inclined an angle χ with respect to the rotation axis, and the rotation
rate is Ω, the time derivatives of the dipole moment will be µ̇ = µΩ sinχ, and µ̈ = µΩ2 sinχ. The NS will then
lose rotational energy by the emission of dipole radiation according to the spin-down formula:

Ė = IΩΩ̇ = −2

3

B2
NSR

6
NS

c3
(sinχ)2Ω4. (4.2)

where I ' M�R
2
NS ' 1045 g cm2 is the typical moment of inertia of a NS. For typical PSR values, assuming

sinχ ∼ 1 one gets:

Ω̇ = −10−12

(
Ω

30 s−1

)3(
BNS

1012 G

)2

s−2 = −2πṖ

P 2
→ Ṗ ' 10−14

(
P

0.1 s

)−1(
BNS

1012 G

)2

s s−1. (4.3)

This implies that, for the canonical PSRs, the magnetic field should be of the order of 1012 G, while for the mil-
lisecond ones it should be ∼ 108 G.

While the details of the formation of a PSR magnetic field are still largely debated, a simple estimate can be
done considering what happens at the NS formation. A NS is just the remnant of the collapsing core of a massive
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star. The typical Fe core of a massive star is supported against gravitational collapse by the degeneracy pressure of
its electrons. Its typical mass, before collapse, will be∼ 1.4M�, the Chandrasekhar limit. This implies that the size
of the Fe core of a massive star will be of the order of the size of a WD, Rcore ∼ 109 cm. If this core is endowed
with a magnetic field Bcore, the net magnetic flux through the core will be ∼ BcoreR

2
core. As the core collapses,

its high conductivity will ensure flux freezing (the magnetic flux through a closed loop will be conserved). Once
the core reaches the size of a NS, RNS, its magnetic field will be enhanced by a factor (Rcore/RNS)2 ∼ 106. This
shows that any preexisting magnetic field can be amplified several orders of magnitude, but needs to be at least
∼ 106 G, to give the expected values. Little is known about the strength of the magnetic field in the pre-collapsing
core. A simple argument states that, taken a star like the Sun, with a typical magnetic dipole field at the surface
∼ 1 G, if one extrapolates this dipole field from the surface at ∼ 1011 cm to Rcore, one finds ∼ 106 G.

The spin-down formula can be integrated to give the spin evolution in time for a NS. First note that the curves
PṖ = const represent PSRs with the same magnetic field. If one assumes that the magnetic field (the magnetic
dipole moment) is constant in time, a PSR should evolve along the PṖ = const curve corresponding to its initial
magnetic field. The spin-down equation can be generalized to:

dΩ

dt
= −kΩn (4.4)

where n is called the braking index, and n = 3 for a pure magnetic dipole. The solution of this equation allows
one to relate the age of the pulsar tPSR to the observed period, period derivative, and initial period Po = 2π/Ωo.

dt = −dΩ

k
Ω−n → tPSR =

k−1

1− n [Ω1−n
o − Ω1−n] =

Ω

(1− n)Ω̇

[
1−

(
Ω

Ωo

)n−1
]

(4.5)

tPSR =
P

(n− 1)Ṗ

[
1−

(
Po
P

)n−1
]
. (4.6)

Assuming the initial rotation to be much faster than the present value, one can neglect the term Po/P and derive
the so called characteristic dipole age τc = P/2Ṗ . The curves P/Ṗ = const are isochrones, representing PSRs
of similar ages. The braking index, n = Ω̈Ω/Ω̇2, is measured only for few PSRs, and is always less than 3 (with
values ranging from 1.4 for the Vela PSR to 2.85 for the pulsar in the SNR Kes 75). The typical ages of the
canonical pulsars are∼ 106 yr, while for the millisecond ones, one finds spin-down ages comparable to the Hubble
time. This is a clear evidence that the millisecond PSRs do not evolve with the mechanism of the canonical ones.

The spin-down formula can also be used to compute how energy losses from the PSR change in time:

Ω =Ωo

(
1− k(n− 1)Ωno tPSR

Ωo

) −1
n−1

(4.7)

→ Ė = IΩΩ̇ = IΩoΩ̇o

(
1− (n− 1)Ω̇otPSR

Ωo

)− n+1
n−1

= Ėo

(
1 +

tPSR

τsd

)− n+1
n−1

(4.8)

where we have defined the characteristic spin-down time τsd = Po/(n− 1)Ṗo.

Based on the idea that PSRs are NSs with a dipolar field, one can explain their pulsed radio emission assum-
ing that the radiation originates in a spot close to the magnetic pole, the so called polar cap, and that it is beamed
in the direction of the magnetic axis. If the magnetic axis is inclined with respect to the rotation axis, the rotation
of the star causes this beam to rotate, like a Lighthouse. If the beam intersects the direction toward us, it gives a
pulse, which repeats every rotation. The narrower is this beam, the sharper is the pulse. Given that a PSR has two
magnetic poles, it might happen that we can receive radiation from both of them (a pulse every half period).
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Figure 4.1: Distribution of periods and periods derivatives for the known pulsar population from the ATNF cata-
logue. Red lines are curves of constant dipole magnetic field (evolutionary curves for pure dipoles) with strength
ranging from 109 to 1014 G. Green lines are curves of constant characteristic dipole age (isochrones for pure
dipoles), rangin from 1010 to 103 yr.

Figure 4.2: How a pulse is produced in the Lighthouse model for PSRs. The full animation of the rotating system
is available at http://pulsar.ca.astro.it/pulsar/Figs/smallmodpulsar.gif
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4.2 The Unipolar Inductor

Before presenting in detail realistic models for PSRs, it is instructive to discuss a simple system, formed by a
rotating conductor embedded in a magnetic field. Such system is known as unipolar inductor. The simplest
symmetry is for the rotation axis to be parallel to a uniform external magnetic field. The first and simplest unipolar
inductor was proposed by Faraday and it is just a rotating disk, as in Fig. 4.3. For a conductor at rest, the laws
of electrostatic state that the outer surface is an equipotential surface, and the internal electric field vanishes (any
electric field will be rapidly cancelled out by charges moving inside). The situation is however different for the
“unipolar inductor”. The magnetic field B inside a rotating conductor provides an unbalanced Lorentz force that
can act on the charge carriers:

q

c
v ∧B (4.9)

where q is the charge of the particle and v its velocity. The consequence of this force is to separate the charges
axially moving all the electrons in one direction and all the ions in the other. This would immediately create an
electric field E that opposes the force due to the magnetic one. The system will then relax to a situation where the
total Lorentz force vanishes:

q

(
E +

v ∧B

c

)
= 0. (4.10)

This equation is just stating that in a frame comoving with the conductor, the electric field mush vanish. This is
known ad the Ideal MHD condition, and the electric field, that satisfies it, is known as the induction electric field.

Figure 4.3: Scheme of a Faraday disk acting as a unipolar inductor.

Using a cylindrical reference frame, with the z-axis aligned with the rotation axis of the disk, and assuming a
uniform field B = Boez one can easily compute the induction electric field:

E = −Ω

c
RBoeR (4.11)

where Ω is the rotation rate of the disk, and R is the distance from the rotation axis. In our disk, one finds that the
electric field is directed along the disk radius, and it induces a potential difference ∆Φ between the centre and the
edge of the disk, Rdisk, equal to:

∆Φ = ΩR2
diskBo/2c. (4.12)

In principle this potential difference can drive a current. It is indeed this potential difference and the current that it
drives that power the entire phenomenology of PSRs.
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To this potential difference, and electric field, one can associate a charge density:

ρ =
1

4π

∂

R∂R
(REr) =

1

2π

Ω

c
Bo (4.13)

The disk is uniformly charged. The net charge on the disk is clearly different from zero (it is the change density,
and the net charge in the corotating frame that vanishes).

Despite its simplicity, the Faraday disk already contains the main physical ingredients of more complex config-
urations. We will see that, apart from changes in the numerical coefficients, due to the more complex geometry
of a realistic PSR case, the general scalings derived above in terms of electric field, potential and charge density
hold.

4.3 The Aligned Rotator

A PSR could be naively modelled, to a first approximation, as a rotating magnetized conducting sphere in vacuum.
For simplicity we will here assume again that the magnetic field axis is aligned with the rotational axis (misaligned
cases will be discussed in ....). Given the symmetry of the problem, the result will be time independent, and the
fields will be stationary.

Figure 4.4: The aligned rotator. LC is the Light Cylinder, the gray shaded area is the closed field lines region, the
green shaded one the open field lines region.

The magnetic field outside the rotating sphere, and just underneath its surface, is assumed to be dipolar. The
structure of magnetic field in the deep interior is irrelevant for our discussion. So, using spherical coordinates
(r, θ, φ), B from the outer surface layers of the star all the way to infinity is:

Br = 2Bo

(
RNS

r

)3

cos θ, Bθ = Bo

(
RNS

r

)3

sin θ (4.14)
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whereBo is the surface magnetic field strength at the equator. Given a rigid rotation, v = Ωr sin θeφ, the induction
electric field just below the surface will be:

Er = Bo

(
R3

NSΩ

cr2

)
sin2 θ, Eθ = −2Bo

(
R3

NSΩ

cr2

)
sin θ cos θ. (4.15)

Note that this induction electric field is perpendicular to the magnetic field: B · E = 0. The electric field in
the outside vacuum can be derived by solving the Laplace equation for the electric field potential ∇2Φ = 0 (its
solution can be expressed in terms of Spherical Harmonics). The potential must vanish at infinity, and must satisfy
the proper boundary conditions at the surface of the sphere. Given that the magnetic and electric fields are time
independent, the tangential component of the electric field just outside the conductor surface, must equal the one
just inside: Eθ(r = R+

NS) = Eθ(r = R−NS). The only possible choice for the potential Φ that satisfies the θ
dependence of the induction electric field at the surface is:

Φ = Ar−3[1− 3 cos2 θ] +Br−1 (4.16)

the parameter A is determined by the surface value of Eθ. The term B is in principle arbitrary, but can be fixed
requiring the radial electric field, Er, to vanish at the pole (in reality its value depends on the internal structure of
the magnetic field, which is not known, the assumption we are doing minimizes the radial electric field at the pole):

A = −1

3

BoR
5
NSΩ

c
, B = 6AR−2

NS = −2BoR
3
NSΩ

c
(4.17)

which gives for the external electric field:

Er =
∂Φ

∂r
=
BoR

5
NSΩ

cr4
[1− 3 cos2 θ] +

2BoR
3
NSΩ

cr2
, Eθ =

1

r

∂Φ

∂θ
= −2BoR

5
NSΩ

cr4
sin θ cos θ (4.18)

This electric field has a component parallel to the magnetic field. Just outside the conductor surface one has:

B ·E = ErBr + EθBθ =
2B2

oRNSΩ

c
[1− 3 cos2 θ] cos θ +

4B2
oRNSΩ

c
cos θ +

2B2
oRNSΩ

c
sin2 θ cos θ

=
2B2

oRNSΩ

c
cos θ[1− 3 cos2 θ + 2 + sin2 θ] =

8B2
oRNSΩ

c
cos θ sin2 θ (4.19)

The parallel electric field is:

E‖ =
B ·E
B

=
8BoRNSΩ

c

cos θ sin2 θ√
1 + 3 cos2 θ

' 4BoRNSΩ

c
θ2 at the pole (4.20)

Apart from a numerical coefficient and the geometric factor, the same result obtained for the Faraday disk. Note
that the sign of the field (if it pushes out positive or negative charges) depends on the sign of Ω · B. For typical
PSR parameters:

E‖ = 109

(
Bo

1012G

)(
RNS

10km

)(
Ω

102s−1

)
θ2 stv. (4.21)

The force exerted by this electric field on an electron (or proton) is several orders of magnitude larger than the
gravitational force. This electric field can lift particles from the NS surface, and, over a short distance l, can
accelerate them, along the magnetic field lines, to very high Lorentz factors:

γe ' 5× 1010

(
Bo

1012G

)(
RNS

10km

)(
Ω

102s−1

)(
l

1km

)
θ2 (4.22)

Such high relativistic particles will emit curvature radiation as they move along the curved magnetic field lines.
This radiation will be beamed along the magnetic field. This is the mechanism that is thought to be at the base of
the collimated emission in the Lighthouse model.

It is clear that a rapidly rotating NS, with a strong magnetic field, cannot be surrounded by a vacuum. Charges
will be pull off the surface, and a charge density will be established in the magnetosphere, to shorten the parallel
electric field.
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4.3.1 The polar cap size

Particles that are lifted by the parallel electric field, can be enforced to corotate with the PSR only within a region
where Ωr sin θ < c. The boundary of this region is known as Light Cylinder (LC):

rLC =
c

Ω sin θ
. (4.23)

The ratio c/Ω sets a typical length scale for the magnetosphere. The magnetosphere itself can be divided into two
parts. The region of field lines that close within the Light Cylinder, known as closed field line region, and the
region of field lines that extend beyond the Light Cylinder, known as open field lines region. Whitin the closed
field line region, particles extracted by the parallel electric field, can set into a corotating equilibrium, giving rise
to a charge distribution that eventually will shorten the parallel electric field itself. Instead, particles extracted in
the open field line region, might in principle stream away outside the LC. Once beyond the LC, particles cannot
be stopped, and they will simply fly away, eventually opening the field lines. So it is possible that a charge density
never form, strong enough to completely shorten the parallel electric field, and a continuos extraction of charges
takes place at the foot points of the open field line region. It is thus meaningful to identify the emitting polar cap
with the open field line region at the surface of the star.

The boundary between the open and closed field line regions corresponds to the field line that exactly closes at the
LC, the last closed field line. For a dipolar magnetic field, the field lines have the parametric equation r = A sin2 θ.
The equation for the last closed field line is:

r=
c

Ω
sin2 θ. (4.24)

The foot point of this line at the stellar surface is just the size of the polar cap:

sin θcap ' θcap =

(
RNSΩ

c

)1/2

= 0.1

(
RNS

10km

)1/2(
Ω

100s−1

)1/2

(4.25)

The typical Lorentz factor of an electron accelerated at the polar cap, over a distance l will be:

γe '
eBoR

2
NSΩ2l

mec4
' 5× 108

(
Bo

1012G

)2(
RNS

10km

)(
Ω

102s−1

)2(
l

1km

)
(4.26)

4.3.2 Outer Gaps

We have seen that close to the pole, in the region of field lines that do not close within the Light Cylinder, particles
can be extracted and accelerated. There is also another location in the pulsar magnetosphere where a strong
potential can develope. In order to shorten the parallel component of the electric field, a given charge must be
present in the magnetsphere. If one assumes to first order a corotating magnetosphere one can derive a typical
charge from:

ρe = ∇ ·E = −1

c
∇ · (v ∧B) (4.27)

Assuming that the magnetospheric magnetic field can be described as a dipole, at least as a first approximation
within the Light Cylinder, then one finds:

ρe = ∇ ·E = −1

c
[B · ∇ ∧ v − v · ∇ ∧B] = −Ωez ·B

c
(4.28)
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Figure 4.5: The concept of outer gaps. The blue line represents the null surface, separating magnetospheric regions
that require a positive charge from those requiring a negative one. The outer gap region requires positive charge
but its magnetic field lines connect to part of the NS surface where the charge is negative.

which is known as Goldreich-Julian charge density. It is evident that the sign of this charge changes depending on
the sign of Bz . The surface where Bz = 0 is known as the null surface. This surface separates the magnetosphere
into two regions: one where the charge necessary to shorten the parallel electric field is negative, from one where
it is positive.

In principle the only possible source of charges is the Neutron Star. However it is immediately evident that in the
outer part of the magnetosphere there are regions that require, for example, a positive charge density, but that are
connected to portion of the NS, where only a negative change density can be extracted. How charge of a given
sign can reach the outer part of the magnetosphere if only charge of the opposite sign can be extracted from the
star along those field lines? This is at the origin of the concept of outer gaps: regions in the outer magnetosphere,
close to the Light Cylinder, where the necessary neutralizing charge density cannot come from the stellar surface.

4.4 The Orthogonal Rotator

We will investigate here the case of an orthogonal rotator. This can be considered as the opposite extreme to the
aligned case. For an orthogonal spinning dipole, the electromagnetic field will have a radiation term, function of
the retarded time, which will dominate at large distances, and that is ultimately responsible for the radiation energy
loss. However, as we discussed for the aligned case, we are interested just to the conditions at the surface of the
star, to show that a parallel electric field developes. Thus we will neglect in the following derivations the wave part
of the field. The orthogonal case will allow us to consider a configuration that is time dependent, and to see what
changes this introduces.
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Figure 4.6: Geometry of the orthogonal rotator.

For simplicity we will make reference to a cartesian coordinate system [x, y, z] to derive the magnetic field. An
orthogonal (to the z-axis) dipole, rotating at a frequancy Ω, is characterized by a magnetic dipole moment that in
cartesian coordinates is:

µ = µo cos (Ωt) ex + µo sin (Ωt) ey. (4.29)

with µo = BoR
3
NS. Close to the NS surface we can assume that the magnetic field has purely dipolar geometry:

B =
(er · µ)er − µ

r3
(4.30)

⇒ Br = 2
(er · µ)

r3
= 2Bo

(
RNS

r

)3

sin θ cos (φ− Ωt) (4.31)

⇒ Bθ = − (eθ · µ)

r3
= −Bo

(
RNS

r

)3

cos θ cos (φ− Ωt) (4.32)

⇒ Bφ = − (eφ · µ)

r3
= Bo

(
RNS

r

)3

sin (φ− Ωt) (4.33)

(4.34)

where we recall here that er = sin θ cosφ ex + sin θ sinφ ey + cos θ ez , while eθ = cos θ cosφ ex +
cos θ sinφ ey − sin θ ez , and eφ = − sinφ ex + cosφ ey .

In the case of a time varying magnetic field, the electric field inside the star will be of the form E = Eind + Erot,
with Erot = ∇Φrot. The term Eind is due to the time varying magnetc field, through induction. The term Erot

instead is an additive term, having zero curl, that ensures the vanishing of the net Lorentz force for corotating
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charges. One has:

∇∧Eind = −1

c

∂B

∂t
and (Eind + Erot) = −Ωr sin θ

c
eφ ∧B (4.35)

One finds that:

Eind = −ΩBo
c

(
R3

NS

r2

)
[cos (φ− Ωt) eθ − cos θ sin (φ− Ωt) eφ] (4.36)

Erot = −ΩBo
c

(
R3

NS

r2

)
[sin θ cos θ cos (φ− Ωt)er + (sin2 θ − cos2 θ) cos (φ− Ωt)eθ +

+ cos θ sin (φ− Ωt)eφ] (4.37)

The net electric field just underneth the surface is:

Er = −ΩBo
c

(
R3

NS

r2

)
sin θ cos θ cos (φ− Ωt) (4.38)

Eθ = −2ΩBo
c

(
R3

NS

r2

)
sin2 θ cos (φ− Ωt) (4.39)

Eφ = 0 (4.40)

For the electric field outside the NS surface one proceeds following he same approach as in the aligned case.
Assuming a vacuum, one looks for a solution of the form: E = Eind + Evac such that:

∇∧Eind = −1

c

∂B

∂t
and Evac = ∇Φvac such that ∇2Φvac = 0 (4.41)

given that ∇ · Eind = 0, and ∇ ∧ Evac = 0. The induction part Eind is the same as the one computed before.
The vacuum part instead can again be expressed using spherical harmonisc. In particular, the only harmonic that
provide the correct angular dependence to match the tangential electric field at the surface, is the l = 2, m = 1,
Y 1

2 , real harmonic ∝ r−3 sin θ cos θ cosφ. One finds:

Φvac =
ΩBo
c

(
R5

NS

r3

)
sin θ cos θ cos (φ− Ωt) +

B

r
(4.42)

where the coefficient is selected to match the enectric field at the surface. As before we have added a monopolar
component, which is arbitrary. For simplicity we will now neglect it. We recall however that this implies that there
might be a net surface charge at the magnetic pole. We will show that now this change is zero for B = 0.

The net electric field just outside the NS surfce is:

Er = −3ΩBo
c

(
R5

NS

r4

)
sin θ cos θ cos (φ− Ωt) (4.43)

Eθ = −ΩBo
c

[(
R5

NS

r4

)
cos (2θ)−

(
R3

NS

r2

)]
cos (φ− Ωt) (4.44)

Eφ =
ΩBo
c

[(
R3

NS

r2

)
−
(
R5

NS

r4

)]
cos θ sin (φ− Ωt) (4.45)

which, as required, at the surface matches the internal tangential component.

So one has that just above the surface:

E ·B =
4ΩRNSB

2
o

c
sin2 θ cos θ cos2 (φ− Ωt) (4.46)
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Close to the the polar cap, whose location is defined by φ = Ωt, θ = π/2, one has:

E‖ =
E ·B
Bo

≈ 2ΩRNSBo
c

sin2 θ cos θ cos2 (φ− Ωt) ≈ 0 +O(θ − π/2) +O(φ− Ωt)2 (4.47)

Again apart from a different numrical coefficient, and a more complex angular dependence, the same result as in
the aligned case. As we anticipated with B = 0 one find that at the magnetic pole, the outer radial electric field
vanishes, and the net surface charge is thus zero.

4.5 QED Pair Creation

In this section we present a heuristic derivation of the photon pair production in a strong magnetic field. The correct
derivation of this process requires the full machinery of QED: quantization of the EM field and the use of Dirac
equation for electrons and positrons. Here instead we will take a poor-man approach based on a physical picture
of the behavior of virtual pairs in a magnetic field.

Figure 4.7: Left part: virtual pair creation by a photon during its propagation. Right part: virtual/real pair creation
by a photon in a magnetic field.

It is a known result of QED that photons can turn into a virtual e± pair as they propagate. Usually this pair annihi-
lates back to the original photon. However there is a finite possibility for this pair to interact with the environment
(for example an external EM field) before annihilation. This leads to QED non-linear effects.

Let us concentrate on high energy photons hν > 2mec
2. Lower energy photon can never produce pairs, be-

cause they do not have enough energy. However, even higher energy photons cannot spontaneously create a pair.
This because the creation of a pair cannot simultaneously satisfy conservation of momentum and energy. The
momentum and energy of a photon of frequency ν go into the momentum and energy of the pair according to;

hν/c→ 2mecγβ, hν → 2mec
2γ. (4.48)

If we assume a high energy photon, such that β → 1, and assume momentum conservation, we get that the energy
law is violated. The pair has an excess energy ∆E given by:

∆E = 2mec
2γ − hν = hν/β − hν = hν

1− β
β
≈ hν

2γ2
≈ hν

γ2
(4.49)

where we have used β =
√

1− 1/γ2. This excess energy sets the typical lifetime of the pair, according to
Heisenberg uncertainty principle:

∆t ' ~
∆E

≈ γ2

ν
(4.50)

Pay attention that the same result can be derived if one assumes energy conservation and momentum violation, and
then defines the lifetime as the position uncertainty over the speed of light.
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In a magnetic field, the two virtual charges would drift apart due to the action of the Lorentz force. If, during
their lifetime, they drift apart enough that their wave-function do not overlap, then the probability of annihilation
will be strongly reduced. Physically speaking, the magnetic field will provide the required energy/momentum to
satisfy momentum conservation. The intensity of non-linear QED effects will be related to how much the pair can
drift apart during its lifetime.

Before proceeding, we introduce two quantities, that will be useful in the discussion. One is the so called crit-
ical magnetic field:

BQ =
m2
ec

3

e~
= 4.413× 1013 G (4.51)

It is the magnetic field at which the classical cyclotron energy (the energy of the ground Landau level) equals the
rest mass energy of the electron.

~ωc = ~
eB

mec
= mc2

B

BQ
(4.52)

where ωc is the cyclotron frequency. The other is the electron Compton wavelength:

λc =
~
mec

= 3.86× 10−11 cm (4.53)

The Compton wavelength can be thought of as a fundamental limitation on measuring the position of a particle.
As such it sets the typical extent of the electron/positron wave function of the virtual pair (their size). It also sets
the cross-section of interactions in QED.

Figure 4.8: Geometry of the virtual/ral pair created by a photon as the drift in the external magnetic field..

Let us now compute how much the pair drift apart, assuming the magnetic field to be perpendicular to the photon
propagation. The Larmor radius of the virtual pair in the external magnetic field is:

RL =
γmec

2

eB
=

e~
m2
ec

3

BQ
B

γmec
2

e
= γ

BQ
B
λc (4.54)

Overt its typical lifetime ∆t a pair will move along the photon direction an amount ≈ c∆t. Due to the mag-
netic field the trajectory is curved, and the gyration angle will be ∆φ ≈ c∆t/RL. The drift distance will be
D ≈ c∆t∆φ ≈ (c∆t)2/RL.

Note that we are allowed to use te classical trajectory in the limit B < BQ (valid for PSRs), because hν �
~ωc = ~ec/meB = mec

2B/BQ (we are implicitly assuming that the photon energy is high enough to produce a
pair, hν � mec

2).
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Working out the math:

D ≈ B

BQ

1

cλc

(
γ2c

ν

)2

=

[
hν

mec2

]4 ( c
ν

)2 mec
2

hν

1

λc

B

BQ
=

hν

mec2
B

BQ

(
h

mec

)2
1

λc
≈ λc

[
hν

mec2

] [
B

BQ

]
,

which immediately identifies the scale parameter χ of QED:

χ =

[
hν

mec2

] [
B

BQ

]
(4.55)

Interestingly one can immediately guess that non-linear QED effect will be absent for photon propagating along
the magnetic field, because in this case the Lorentz force on the virtual pair will be zero. Indeed this is the case
even for a full QED derivation.

For χ � 1 the pair separates more than λc, which implies that after a typical lifetime the wave-functions of
the two virtual particles do not overlap and annihilation is suppressed.

For χ � 1 the pair separates less than λc, which implies that after a typical lifetime the wave-functions of
the two virtual particles still overlap and pair creation is suppressed. In particular, the probability to create
a real pairs will be exponentially suppressed (pair creation is in this case a tunneling effect): Pcreation ≈
Exp[−1/χ]. The correct QED solution is, in the limit χ� 1, Pcreation = 0.5Exp[−4/3χ]

For χ� 1 the pair never separates more than λc, so one can think of λc as the transverse dimension of the photon.
This is the regime of interest for a PSR, so we will limit our discussion to this case.

We can define the attenuation length, La as the mean free path of a photon for pair creation. The pair creation
process can be seen as an interaction of the photon with the magnetic field. In the same way as the photon field is
quantized, also the magnetic field is quantized. More precisely the magnetic flux is quantized, and the magnetic
flux quantum is given by the flux through a surface corresponding to the lowest Landau level: ΦB = ~c/e.

The number of magnetic flux quanta intercepted by a photon as it propagates a distance L is: nB ≈ LλcB/ΦB .
The probability of a pair creation will be given by the number of magnetic flux quanta intercepted, times the
coupling constant of QED (the fine structure constant α) times the probability of pair creation for single event:

≈ nBα e−4/3χ =
LλcBα

ΦB
e−4/3χ (4.56)

Setting this quantity equal to unity, gives the the attenuation length:

L−1
a ≈

λcBQα

ΦB

(
B

BQ

)
e−4/3χ =

~
mc

e

~c
m2
ec

3

e~
α

(
B

BQ

)
e−4/3χ =

mec

~
α

(
B

BQ

)
e−4/3χ

≈ α

λc

(
B

BQ

)
e−4/3χ (4.57)

where more generally B is the perpendicular magnetic field or La is the attenuation length in the transverse direc-
tion to the magnetic field.
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4.6 Pair Creation in the Polar Cap

We saw in section 4.3 that, if a vacuum forms outside the surface of the NS, a strong parallel electric field arises
that can extract and accelerate particles to replenish the magnetosphere. In particular, this process is going to be
relevant in the open filed line region. Let us investigate what happens to particles extracted in the polar cap. These
particles will be rapidly accelerated to unltrarelativistic speeds over a distance l � RNS. In the strong magnetic
field of PSRs these particles will simply follow the magnetic field lines. Any amount of energy in the transverse
direction will be rapidly lost due to synchrotron emission. The synchrotron power for an electron gyrating in a
magnetic field B, and its typical lifetime τsyn are:

Psyn =
2

3

e4

m2
ec

3
γ2B2 → τsyn =

γmec
2

Psyn
' m3

ec
5

e4
γ−1B−2 = 3× 10−16γ−1

(
B

1012 G

)−2

s (4.58)

indicating that any energy in transverse motion will be rapidly lost over distances� 1cm.

In the polar cap, particles (say electrons) can be accelerated to high Lorentz factor over very short distances.
Moving along curved field lines they will emit curvature radiation. If the Lorentz factor is high enough, the energy
of the emitted photon can be above the kinematic threshold for pair production (hν > 2mec

2 = 1 MeV). This
photon can then interact with the magnetic field, and produce a new pair. The new pair will be then accelerated and
the process can repeat, giving rise to a pair creation cascade. It is this process that provides the required charges
to fill the magnetosphere and ultimately shorten the parallel electric field.

Figure 4.9: Left part: scheme of the pair production in a polar cap. Right part: P -Ṗ diagram and the location of
the death line.

Three requirements must be satisfied for the pair cascade to work:

particles must be accelerated to Lorentz factors high enough such that the curvature photons they produce are
above the kinematic threshold. The energy of a curvature photon, emitted by an electron with Lorentz factor
γ is hν = hγ3c/Rc, where Rc ≈ RNS is the radius of curvature of the magnetic field line. Given that the
Lorentz factor depends on the accelerating distance l according to Eq. 4.26, the above condition reduces to a
condition on l itself:

l > 2

[
m4
ec

13

B3e3Ω6hRNS

]1/3

≈ 103

[
B

1012 G

]−1 [
Ω

30 s−1

]−2

cm � RNS � RLC (4.59)
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the accelerated particle must be able to emit at least one of these high energy photons. This again can be
translated into a condition on how far the particle should move along a field line, based on the power of
curvature radiation:

Pcurv =
2

3

e2

c3
γ4

(
c2

Rc

)2

(4.60)

the number of photons nγ of energy hν ' 2mec
2 produced by the particle in the time it travels a distance l is:

nγ =
Pcurv

hν

l

c
=

Pcurv

2mec3
l > 1 (4.61)

→ l >

[
c5~me

e3BΩ2RNS

] 1
2

≈ 5× 102

[
B

1012 G

]−1
2
[

Ω

30 s−1

]−1

cm � RNS � RLC (4.62)

the emitted photon must pair create in the external magnetic field. This implies a condition on the distance
l travelled by the photon that must be equal to the attenuation length. Recalling that it is the transverse
component of the magnetic field that matters, B⊥ = Bl/Rc, and that the relevant quantity to compare with
the attenuation length is the transverse direction l2/Rc, the condition is:

l2

Rc
>
λc
α

(
B

BQ

)
Exp

[
4

3

mec
2

hν

BQ
B⊥

]
(4.63)

For typical PSR parametersB = 1012 G, Ω = 30 s−1, withRc = RNS, one gets l > 104 cm� RNS � RLC.
Such value is not much sensitive to the PSR parameters.

It is evident that the particles accelerated by the parallel electric field over the polar cap, will be able to produce
a pair cascade over distances of a few hundreds of meters above the NS surface. Ultimately the charges that are
created will shorten the electric field and a situation will arise where the parallel component of the electric field
is negligible. The numbers of pair produced per every primary particle extracted by the PSR is known as pair
multiplicity and for the Crab Pulsar is estimated to be ∼ 105.

From the first condition on the energy of the emitted photon one can derive the so called death condition for
PSRs, the condition for which pair creation ceases to operate and the PSR does not emit any longer. Recalling that
the dipole magnetic field can be defined in terms of the period and its period derivative as:

B = 3× 1019
√
PṖ G (4.64)

and assuming that the limit for pair creation is l < RNS one gets that the pair creation condition can be written as;[
B

1012 G

] [
Ω

30 s−1

]2

≈ 106
√
PṖ

(
P

1 s

)−2

> 10−3 → Ṗ > 10−18

(
P

1 s

)3

(4.65)

This relation define the so called death line in the P -Ṗ diagram. The region below it is called the graveyard.

4.7 The Force Free Pulsar Equation

The end result of the pair creation process is that in the PSR magnetosphere a sufficient charge density develops to
shorten the parallel electric field. A situation will arise where the net EM force acting on a charged plasma will be
zero:

ρeE +
J

c
∧B = 0 (4.66)
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where ρe is the charge density and J is the current density. This condition is known as force-free condition, and
implies that the parallel electric field vanishes E ·B = 0.

Let us consider the simplest geometry of an aligned rotator, Fig.4.10. For this problem we will consider a cylindri-
cal reference frame R, z, φ, with the z-axis coincident with the rotation axis and the symmetry axis of the problem.

Figure 4.10: Scheme of the geometry of the Force Free PSR magnetosphere

The symmetry of the problem is such that the solution will be independent on the azimuthal angle φ, ∂φ = 0, and
stationary in time ∂t = 0. Let us begin by showing that in this case the azimuthal component of the electric field
Eφ vanishes. Axisymmetry implies ∂φEφ = 0→ Eφ = Eφ(R, zo), while stationarity implies:

∇∧E =
1

c

∂B

∂t
= 0 (4.67)

Let us apply this relation to a circular surface S, coaxial with the z-axis, with border ∂S at a vertical coordinate
zo. Using the circulation theorem:∫

S

1

c

∂B

∂t
· ds =

∫
S
∇∧E · ds =

∫
∂S

E · dl =

∫ 2π

0

Eφ(R, zo)Rdφ = 0 → Eφ = 0 (4.68)

for all R and zo.

This result together with the force free condition implies that E ⊥ eφ and E ⊥ B. One can thus write it in
the form:

E =
ω(R, z)R

c
B ∧ eφ (4.69)
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where ω(R, z) is a generic function of position. Substituting this expression in the force free condition Eq. 4.66,
one can find a relation between the current density and the magnetic field:

ρeE +
J

c
∧B =

(
J

c
− ρeω(R, z)R

c
eφ

)
∧B = 0 → J = ρeω(R, z)Reφ + kB (4.70)

where k is a function to be determined. This relation implies that the current has a component aligned with the
magnetic field, and another component that is purely toroidal.

Let us now turn to the magnetic field. The solenoidal condition for an axisymmetic field can be written as:

∇ ·B =
1

R

∂(RBR)

∂R
+
∂Bz
∂z

+
1

R

∂Bφ
∂φ

=
1

R

∂BR
∂R

+
∂Bz
∂z

= ∇ ·Bp = 0 (4.71)

where Bp = BReR+Bzez is the poloidal component of the magnetic field. This implies that the poloidal magnetic
field can be written as the curl of a toroidal vector potential, function of R and z:

Bp =
∇Ψ

R
∧ eφ = − 1

R

∂Ψ

∂z
eR +

1

R

∂Ψ

∂R
ez → ∇ ·Bp = 0 (4.72)

The scalar function Ψ is know as Euler potential or magnetic flux function. It allows one to reduce the problem of
the poloidal field from two variables BR and Bz to just one. Moreover it is evident that Bp · ∇Ψ = 0, the poloidal
magnetic field lines are orthogonal to the gradient of Ψ. This means that the surfaces Ψ = const represent the
magnetic surfaces defined by the rotation of the poloidal field lines around the symmetry axis. Magnetic field lines
lay on these surfaces. The various field lines on the same magnetic surface are all identified by the same value of Ψ.

Let us now go back to the electric field. We will derive here the value of the free function ω(R, z). Recalling
that eφ ∧Bφeφ = 0, and using Eq. 4.69 and Eq. 4.72, we get:

E =
ω(R, z)R

c
B ∧ eφ =

ω(R, z)R

c

(∇Ψ

R
∧ eφ

)
∧ eφ = −ω(R, z)

c
∇Ψ (4.73)

where we have used the triple vector product rule, (∇Ψ ∧ eφ) ∧ eφ = (eφ · ∇Ψ)eφ − (eφ · eφ)∇Ψ, and the
axisymmetric assumption, (eφ · ∇Ψ) = ∂φΨ = 0.

Stationarity implies:

1

c

∂B

∂t
= 0 = ∇∧E = −1

c
∇∧ (ω∇Ψ) = −1

c
(∇ω ∧∇Ψ + ω∇∧∇Ψ) = −1

c
∇ω ∧∇Ψ = 0 (4.74)

where we dropped the explicit R, z dependence of ω. This states that ∇ω is parallel to ∇Ψ, meaning that ω is
constant on magnetic surfaces Ψ = const (ω is constant along a magnetic field line), and one can write ω(R, z) =
ω(Ψ). At the surface of the NS, assuming corotation of the plasma, v = ΩReφ, from the Ideal MHD condition
one gets:

E = −1

c
v ∧B =

ΩR

c
B ∧ eφ = −Ω

c
∇Ψ → ω = Ω (4.75)

In case of regid rotation Ω = const, one finds that the Euler potential is equal to the electrostatic potential times
the rotation rate.

At this point we can derive the charge density and current density for the plasma in the magnetosphere:

ρe =
∇ ·E

4π
= − Ω

4πc
∇2Ψ = − Ω

4πc

(
∂2Ψ

∂R2
+

1

R

∂Ψ

∂R
+
∂2Ψ

∂z2

)
(4.76)

while using Eq. 4.70, and recalling that for a steady state 4πJ/c = ∇∧B, we get:

Jφ =
c

4π
(∇∧B)φ =

c

4π

(
∂BR
∂z
− ∂Bz

∂R

)
= − c

4πR

(
∂2Ψ

∂z2
+
∂2Ψ

∂R2
− 1

R

∂Ψ

∂R

)
=

= −Ω2R

4πc

(
∂2Ψ

∂R2
+

1

R

∂Ψ

∂R
+
∂2Ψ

∂z2

)
+ kBφ (4.77)
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This equation can be rewritten as:

4πk

c
Bφ =

(
∂2Ψ

∂R2
+
∂2Ψ

∂z2

)[
Ω2R

c2
− 1
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]
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∂Ψ
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]
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∂R2
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1
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∂Ψ

∂R
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1
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]
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∂R2
+
∂2Ψ
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)[
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R2R2
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]
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1

R

∂Ψ

∂R

[
R2 +R2

LC

R2R2
LC

]
R (4.78)

where we have used RLC = c/Ω. From this, one gets:

−4πk

c

R2
LCR

R2
LC −R2

Bφ =

(
∂2Ψ

∂R2
+
∂2Ψ

∂z2

)
− 1

R

[
R2

LC +R2

R2
LC −R2

]
∂Ψ

∂R
(4.79)

In order to solve this equation , or at least to cast it in a closed form, one needs to find how Bφ and k depend on Ψ.

Using Eq. 4.70, the condition of stationarity ∂t = 0, and axisymmetry ∂φ = 0, one finds from the charge conser-
vation law:

∇ · J = 0 = ∇ · (kB) = ∇k ·B + k∇ ·B = ∇k ·Bp = (∇k ∧∇Ψ) · eφ
R

= 0. (4.80)

This is a relation similar to the one we found for ω. It states that ∇k is parallel to ∇Ψ, implying the k is constant
on the surfaces Ψ = const (i.e. along magnetic field lines), and one can write k = k(Ψ).

At this point we can compute the total current flux through a circular surface S, coaxial with the z-axis, with
border ∂S at a vertical coordinate zo:

I =

∫
S

J · dA = 2π

∫ R

0

JzRdR = 2π

∫ R

0

kBzRdR = 2π

∫ R

0

k
∂Ψ

∂R
dR (4.81)

which implies that the net current through a magnetic surface is just a function of Ψ: I(Ψ). From this we have:

∂I

∂R
= 2πk

∂Ψ

∂R
→ k =

1

2π

∂I

∂Ψ
(4.82)

We have also from the circulation theorem:

I =

∫
S

J · dA =
c

4π

∫
S
∇∧B · dA =

c

4π

∫
∂S

B · dl =
c

4π

∫ 2π

0

BφRdφ =
c

2
RBφ(R, zo) (4.83)

Finally, using the same approach, let us compute the total magnetic flux through a circular surface S, coaxial
with the z-axis, with border ∂S at a vertical coordinate zo:

ΦB =

∫
S

B · dA = 2π

∫ R

0

BzRdR = 2π

∫ R

0

∂Ψ

∂R
dR = 2πΨ(R, zo) (4.84)

whence we see that Ψ represents the total magnetic flux within the magnetic surface it labels.

Putting together Eq. 4.79 with Eq. 4.82 and Eq. 4.83, we find:(
∂2Ψ

∂R2
+
∂2Ψ

∂z2

)
− 1

R

[
R2

LC +R2

R2
LC −R2

]
∂Ψ

∂R
= − 4

c2
R2

LC

R2
LC −R2

I(Ψ)
∂I(Ψ)

∂Ψ
(4.85)

which is known as pulsar equation
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This is an elliptical equation that must be solved using the appropriate boundary conditions. The boundary con-
ditions on Ψ should be set at the surface of the star, depending on the local geometry of the poloidal component
of the magnetic field. The function I is in general arbitrary. One could naively think that it is set by the value of
the azimuthal magnetic field at the surface Bφ(r = RNS). However the function I cannot be fixed this way but
must be chosen such that Eq. 4.85 is regular in R = RLC. It is evident that at the Light Cylinder the denominators
vanish in Eq. 4.85. Regularity requires:

∂Ψ

∂R
=

2RLC

c2
I(Ψ)

∂I(Ψ)

∂Ψ
(4.86)

It is this regularity condition that fixes the possible choices of I . The azimuthal magnetic field at the surface Bφ is
just the outcome. Physically the regularity condition at the Light Cylinder determines the structure of the magnetic
field at the surface, and not the other way around.

4.8 The Split Monopole Solution

Despite its simplicity the pulsar equation has proved quite challenging to solve. It took more than 30 years to find
a realistic dipolar solution, and only with the use of multidimensional numerical tools.

Figure 4.11: Geometry of ther split monopole. Left part: side view. Right: top view.

There is however a very simple solution of the equation, that is fully analytic and that encapsulates the main
properties of more complex results. Such solution is known as the split monopole. It corresponds to a magnetic
configuration, where the magnetic field is purely radialBθ = 0 and is uniform at the surfaceBr(r = RNS) = ±Bo,
where the sign changes between the north and south hemisphere in order to preserve∇·B = 0 across any surface,
even one containing the origin.

The first step is to write down the pulsar equation in terms of the adimensional coordinates R̃ = R/RLC and
z̃ = z/RLC:(

∂2Ψ

∂R̃2
+
∂2Ψ

∂z̃2

)
− 1

R̃

[
1 + R̃2

1− R̃2

]
∂Ψ

∂R̃
= −4R2

LC

c2
1

1− R̃2
I(Ψ)

∂I(Ψ)

∂Ψ
(4.87)
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A radial uniform magnetic field, given the solenoidal condition ∇ · B = ∂r(r
2Br)/r

2 = 0, can be written using
spherical coordinates (r, θ, φ), in terms of its value at the radius of the Light Cylinder B(r = RLC) = B̃o as:

Bp =

{
+B̃o/r̃

2er if θ < π/2

−B̃o/r̃2er if θ > π/2
(4.88)

where again r̃ = r/RLC. leading to:

Bp =

{
+B̃o sin θ/r̃2eR + B̃o cos θ/r̃2ez if θ < π/2

−B̃o sin θ/r̃2eR − B̃o cos θ/r̃2ez if θ > π/2
(4.89)

And back in the original cylindrical coordinates:

Bp =

{
+B̃oR̃(R̃2 + z̃2)−3/2eR + B̃oz̃(R̃

2 + z̃2)−3/2ez if θ < π/2

−B̃oR̃(R̃2 + z̃2)−3/2eR − B̃oz̃(R̃2 + z̃2)−3/2ez if θ > π/2
(4.90)

The Euler potential leading to this field by Eq.4.72, can be computed from the enclosed magnetic flux, and it is:

Ψ =
1

2π

∫
S

B · dA =

∫ θ

0

Brr
2 sin θdθ = ±B̃oR2

LC(1− cos θ) = ±B̃oR2
LC

(
1− z̃

(z̃2 + R̃2)1/2

)
(4.91)

where the sign depends on the hemisphere, and the dimensionality is that of a magnetic flux as expected. Note that,
in principle, the Euler potential is always defined minus a constant, which is fixed by requiring it to be coincident
with the enclosed magnetic flux.

Substituting this potential into the adimensionalized PSR equation Eq.4.87, one gets:

∓ 2B̃oR
2
LCR̃

2z̃

(R̃2 + z̃2)3/2
=

4R2
LC

c2
I(Ψ)

∂I(Ψ)

∂Ψ
→ ∓ 2B̃oR̃

2z̃

(R̃2 + z̃2)3/2
=

4

c2
I(Ψ)

∂I(Ψ)

∂Ψ
(4.92)

which has the following solution:

I(Ψ) = ∓ c

2RLC
Ψ(2− Ψ

B̃oR2
LC

) = ∓RLCcB̃o
2

(1− cos θ)(1 + cos θ) = ∓RLCcB̃o
2

sin2 θ (4.93)

and this gives the azimuthal component of the magnetic field:

Bφ = ∓RLCB̃o
R

sin2 θ = ∓RLCB̃o
r

sin θ = −Br
r sin θ

RLC
. (4.94)

which shows that on the Light Cylinder the azimuthal component is equal to the poloidal one.

This is a result that holds also for more complex magnetic geometries. Moreover one finds that Bφ/Br ∝ r sin θ:
outside the LC the field is progressively more and more toroidal. The magnetic field lines are spirals: the rota-
tion drag forward the foot-point of the field line, that trails backward. Already at 10RLC the toroidal component
is 10 times stronger than the poloidal one and 100 times more energetic. The solution of the pulsar equation is
asymptotically dominated by the toroidal component. Far away from the LC one can safely assume B ≈ Bφeφ

4.8.1 Torque and Energy Losses

The split-monopole solution we have just derived, allows us to compute easily the energy and angular momentum
losses, associated to a rotating force free magnetosphere.



FROM THE MONOPOLE TO THE DIPOLE 65

To begin with, we compute the electric field, in a spherical coordinate system:

E = −Ω

c
∇Ψ = ∓Ω

c
B̃oR

2
LC

sin θ

r
eθ (4.95)

The energy losses can be easily computed from the Poynting flux S:

S =
c

4π
E×B =

c

4π
(EθBφer − EθBreφ) =

Ω

4π
B̃2
oR

4
LC

sin θ

r3
eφ +

Ω

4π
B̃2
oR

3
LC

sin2 θ

r2
er (4.96)

which is the same in the north and south hemisphere. The energy losses are associated with the radial component
of the Poynting flux vector. Note that the latitudinal dependence of the energy flux is ∝ sin2 θ. The flux is
concentrated on the equatorial plane and goes to zero at the pole. This is not a collimated outflow.

Ė =

∫ 2π

0

dφ

∫ π

0

Ω

4π
B̃2
oR

3
LC

sin2 θ

r2
r2 sin θdθ =

1

2c
B̃2
oR

4
LCΩ2

∫ π

0

sin3 θdθ =
2

3

H2Ω2

c
(4.97)

independent on the radius at which it is computed. It is also evident that the energy losses can be written in terms
of the two general independent invariants of the problem: the rotation rate Ω and the net open magnetic flux,

H =
1

4π

∫
sphere

|Br|r2 sin θdθdφ (4.98)

not to be confused with the total magnetic flux, which is always zero by the solenoidal condition.

In the same way one can compute the angular momentum losses L̇ associated to the φ component of the Poynting
flux:

L̇ =

∫ 2π

0

dφ

∫ π

0

Sφr sin θr2 sin θdθdφ =
1

2c
B̃2
oR

4
LCΩ

∫ π

0

sin3 θdθ =
2

3

H2Ω

c
(4.99)

which show that Ė = ΩL̇ as expected for rotational energy losses.

Interestingly, despite being axisymmetric, this system has energy losses. This seems to contradict the statement
that axisymmetric solutions of Maxwell equations have no energy losses. The difference is that, in this case, we
are not dealing with a vacuum but with a space filled with charges and currents.

Note that the relation that we have derived for the split-monopole does not have the same scaling in terms of
Ω as the dipole spin-down formula. It corresponds instead to a braking index n = 1. The reason for this is the fact
that we have assumed a purely monopolar structure for the field. There is no closed field line region. This also
suggest a possible interpretation for the braking index: a braking index less than 3 can be interpreted as a magnetic
geometry half way between a dipole and a monopole.

4.9 From the monopole to the dipole

The fact that the energy losses can be defined in terms of general independent invariants (quantities that do not
depend on each other or on the radius where they are computed) suggests a way to renormalize the split-monopole
solution to account for the dipolar structure of the magnetosphere inside the Light Cylinder.

Let us consider a surface far away from the LC, and compute there the general invariants. The location of such
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surface is irrelevant. The rotation rate Ω is always well defined. The net open flux instead needs some attention.
Field lines that close within the LC, do not contribute any flux at large distances. The only field lines that extend
beyond the LC (and they cannot close beyond the LC), are those coming from the polar cap. So the net open flux
at infinity will be just the flux across the polar caps:

H =

∫ θcap

0

Bo cos θR2
NS sin θdθ ≈ BoR2

NSθ
2
cap = BoR

3
NS

Ω

c
(4.100)

where we have assumed a dipolar field at the surface.

Substituting this effective net open flux in the formula for the split-monopole we get:

Ė =
2

3c3
B2
oR

6
NSΩ4 (4.101)

exactly the same scaling as the dipole radiation. The correct numerical coefficient, derived from more accurate
numerical simulations, is not 2/3 but ≈ 1.

It might seem surprising at first, that a force free solution, with all its complex distribution of charges and cur-
rents, gives exactly the same scaling that was found for the vacuum case. The reason is that, in both cases there are
independent invariant quantities, and that there is only one possible combination of them with the correct dimen-
sionality of energy losses.

Let us start with the split monopole. The two independent invariants are the rotation rate Ω with dimensions
[T−1] and the net open flux H with dimension [M1/2L3/2T−1]. There is only one possible combination of them
and the speed of light c with the dimensions of Ė ( i.e. [ML2T−3]), and it isH2Ω2/c.

For the dipole, the net magnetic flux is not an invariant, because it depends on the size of the polar cap which
is a function of the rotation rate. The invariant in this case is D = H/Ω, as can be seen from Eq. 4.100. This
is nothing else than the magnetic dipole moment. There is only one possible combination of the invariants Ω,
D = H/Ω, and c with the correct dimension for energy losses, and this is D2Ω4/c3.



CHAPTER 5

PULSAR NEBULAE

5.1 Observations

A pulsar wind nebula (PWN, also known as ”plerion”, derived from a Greek word meaning ”full”) is a nebula
powered by the pulsar wind of a pulsar. As we saw in the previous Chapter 4 and Sec. 4.7, a young pulsar, which
is rapidly rotating, will loose its rotational energy via a relativistic wind. At the early stages (first few thousands of
years) of their evolution, PWNe are often found inside the shells of the parent supernova remnants (SNR).

The first evidence that the pulsar transfer energy to the surrounding medium came from the Crab Nebula. The Crab
Nebula is the remnant of a SN explosion that took place in 1054 AD. Its morphological aspect can be described as
a combination of two distint regions (see Fig. 5.1). The outer part shows a filamentary network, observed mostly
in optical thermal emission lines, with typical expansion speeds of the order of 1000 km s−1, corresponding to
an expansion age of ∼ 1000 yr. The central region instead is filled with a uniform emission, characterized by a
broadband non-thermal spectrum, extending from radio to X-ray and TeV energies, and a high degree of linear
polarization. The Radio spectrum is well fitted by a power-law, and the same holds for the X-ray part, which
however has a much steeped spectrum.

These characteristics are common to the class of PWNe: a flat spectral index in the radio band, ∼ 0 − 0.3 which
steepens in the X-ray to 2.3− 3.3; a highly linearly polarized flux; an increasing brightness towards the center.

Interestingly the typical X-ray luminosity of the Crab Nebula is about 10% of the spin-down luminosity of the
pulsar, suggesting that it is indeed the pulsar itself to power the continuous emission from these objects.

Several PWNe are known today in different stages of evolution. They have also been found around older pulsars
whose supernova remnants have disappeared, including millisecond radio pulsars. There are also systems where
the pulsar, due to the kick velocity received at birth, has emerged from the SNR and is interacting directly with the
ISM, giving rise to cometary shaped nebulae.

Neutron Stars, Lecture Notes.
By Bucciantini Copyright c© 2020 John Wiley & Sons, Inc.
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Figure 2
The integrated
spectrum of the Crab
synchrotron nebula,
from Atoyan &
Aharonian (1996),
assembled from
sources cited in that
paper. The electron
energies shown
correspond to peak
synchrotron emission
assuming a magnetic
field of 300 µG. Most
of the emission from
the Crab is emitted
between the optical
and X-ray bands. The
highest energy γ-rays
are due to inverse
Compton radiation.

pulsar (∼1.8×1049ergs) still resident within the synchrotron nebula. Averaged over the volume of
the synchrotron nebula, this energy density corresponds to a pressure of ∼7.2 × 10−9 dyne cm−2,
very close to the canonical value assuming equipartition and B ∼ 300 µG (Trimble 1968).

The overall spectrum of the Crab Nebula peaks in the range between 1014–1018 Hz in the
optical through the X-ray part of the spectrum (see Figure 2, from Atoyan & Aharonian 1996).
Assuming a magnetic field of 300 µG, this radiation is associated with emission from electrons with
energies between a few hundred GeV and a few tens of TeV. The very highest energy emission
from the Crab above frequencies of ∼1023 Hz is thought to be due to inverse Compton radiation
(Atoyan & Aharonian 1996). The bump around 1013 Hz in the far infrared part of the spectrum is
the result of thermal emission from dust in the nebula. This dust, which condensed from material
ejected in the explosion, is heated to a temperature of about 80 K (Marsden et al. 1984).

Figure 3 shows a color composite image of the Crab synchrotron nebula. An X-ray image
of the Crab obtained with Chandra is shown in blue. An optical continuum image is shown in
green. Red shows a radio image of the Crab obtained with the VLA. The first thing that is
immediately apparent in these images is the difference in spatial extent of the Crab synchrotron
nebula when viewed at different wavelengths. The nebula is smallest in size when viewed at
high energies, and grows progressively larger when viewed at lower energies. This basic trend is
relatively easy to understand. High-energy particles injected into the nebula at the wind shock
experience both synchrotron burn off and energy loss owing to adiabatic expansion as they move
outward through the nebula. Even so, faint X rays are still seen close to the boundary of the nebula
(Hester et al. 1995; Seward, Tucker & Fesen 2006), indicating that the real situation is more
complex.

The synchrotron nebula shows a wealth of fine-scale structure that can be extraordinarily
dynamic, varying appreciably on timescales of days. The standard nomenclature for these features
comes from Scargle (1969), who identified a number of arcuate features or wisps located along and
generally perpendicular to a line going from the SE to the NW through the pulsar. (By convention,
features in the Crab synchrotron nebula are referred to as wisps, while the term filament is reserved
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Figure 5.1: Left panel: images of the Crab Nebula in different bands. In optical the green filaments are a thermal
lime emission, while the light blue is non-thermal synchrotron. Right panel: spectrum of the Crab Nebula from
Radio to MeV.

5.2 PWNe Models

As we saw in Chapter 4 and Sec. 4.7 the pulsar wind is highly relativistic, while the typical expansion speeds of
SNRs, are of the order of a few thousands km s−1. Even if a PSR was to transfer all of its rotational energy to the
SNR ejecta, the expansion speed Vpwn would be:

MejV
2
pwn ' Erot =

INS

2
Ω2
o (5.1)

where Mej is the ejecta mass, INS the NS moment of inertia and Ωo the spin-frequency at birth. For a typical PSR
with INS ≈ 1045 g cm2, born with a period of ∼ 0.01 s ⇒ Ωo ' 600 s−1, inside a SNR with ∼ 10M� of ejecta,
one has:

Vpwn ' 108

(
10M�
Mej

)1/2(
Ωo
600

)
(5.2)

much smaller than the speed of light, and slightly smaller than typical SNR expansion speeds. This implies that the
pulsar wind cannot force the surrounding medium to expand at the speed of light. Instead it will be the surrounding
medium to force the pulsar wind to slow down. This interaction leads to the formation of a shock known as
termination shock (TS). The PWN is the subsonic bubble formed by the wind downstream of the termination
shock. A simple estimate for the location of the termination shock can be obtained by equating the pressure inside
the PWN to the ram pressure of the wind. Neglecting the wind anisotropy, one has:

Ė

4πcR2
TS

≈ Ppwn ≈
Epwn

R3
pwn

≈ Ėtpwn

R3
pwn

⇒ RTS ≈ Rpwn

√
Vpwn

c
(5.3)

where Epwn is the total energy in the nebula (for a relativistic subsonic fluid Ppwn = Epwn/3), tpwn is the age of
the nebula, Rpwn is its radius and we have assumed that the expansion speed is Vpwn ≈ Rpwn/tpwn. Given the
typical expansion speeds derived above, one has that RTS ≈ Rpwn/20. Note also that the TS will expand outward
at a speed comparable to the expansion speed of the nebula. In the Crab Nebula we observe in X-ray a dark central
region, which obviously does not contain emitting material, and which is thought to represent the internal cavity
occupied by the relativistic wind upstream of the TS.
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To model the flow properties downstream of theTS one needs to solve first the shock jump conditions. The typical
radius of the TS is much larger than the Light Cylinder (LC), and one can assume that the magnetic field is purely
toroidal, and perpendicular to the wind flow velocity. Let us assume for simplicity a spherical TS (this is not strictly
correct because of the energy flux anisotropy in the PSR wind). The wind will impact the shock perpendicularly to
the shock surface.

Given its large radius, in comparison to the LC the shock can be treated as plane parallel, while given its slow
speed with respect to the speed of light, it can be treated as stationary.

5.2.1 Shock Jump Conditions

At a stationary plane parallel shock, the relativistic conservation laws for the mass, momentum, energy, and mag-
netic field flux are:

γuρuc = γdρdvd (5.4)

(ρuc
2 + b2u)γ2

uc
2 + pu + b2u/2 = (ρdc

2 + 4pd + b2d)γ
2
dv

2
d + pd + b2d/2 (5.5)

(ρuc
2 + b2u)γ2

uc = (ρdc
2 + 4pd + b2d)γ

2
dvd (5.6)

buγuc = bdγdvd (5.7)

where ρ, p and b are the density, pressure and magnetic field in the comoving frame respectively, γ and v are the
flow Lorentz factor and velocity measured in the shock frame (which given the small shock speed is equivalent to
the PSR and lab frame), and the subscripts u and d refer to the upstream and downstream sides. We have moreover
assumed that the upstream speed is c, the wind is cold pu � ρu, and the adiabatic index downstream of the TS is
4/3, appropriate for a relativistic fluid with p = e/3.

Let us introduce the following substitutions:

ρd → c1ρuγu pd → c2ρuγ
2
uc

2 bd → c3buγu vd → βdc (5.8)

Then the equations for the jump become:

γuρu(1− c1γdβd) = 0 (5.9)
γu
2

[(2− c23)buγu + 2(1− c2)γuρuc
2 − 2γ2

d(c23b
2
uγu + (c1 + 4c2γu)ρuc

2)v2
d] = 0 (5.10)

γ2
u(ρuc

2 + b2u)− γu[ρu(c1 + 4c2γu)c2 + b2uc
2
3γu)γ2

dβd = 0 (5.11)
buγu(1− c3γdβd) = 0 (5.12)

The first and the last have solution:

c1 = c3 =
1

γdβd
(5.13)

Defining a magnetization parameter of the upstream flow as σ = b2u/ρuc
2, which is just the ratio of Poyting flux to

kinetic energy flux, and using the solutions Eq. 5.13, then Eq. 5.11 has solution:

c2 =
2γ2
dβ

2
d(1− γdβd/γu)− σ

2γ2
dβ

2
d(1 + 4γ2

dβ
2
d)

→ 2− σ/γ2
dβ

2
d

2 + 8γ2
dβ

2
d

in the limit γu →∞ (5.14)
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Substituting the solutions for c1, c2 and c3 in Eq. 5.10 one finds:

1

1 + 4γ2
dβ

2
d

γuρu[−γdβd + γu(βd(1 + 4γ2
d(−1 + βd)βd) + σ(1 + βd − 4γ2

dβ
2
d + 4γ2

dβ
3
d))] = 0 (5.15)

which in the limit γu →∞ reduces to

βd(1 + 4γ2
d(−1 + βd)βd) + σ(1 + βd − 4γ2

dβ
2
d + 4γ2

dβ
3
d) =

σ + βd + 2σβd − 3β2
d − 3σβ2

d

1 + βd
= 0 (5.16)

where we have used the fact that 1− β2
d = γ−2

d . The solution is:

βd =
1 + 2σ +

√
1 + 16σ + 16σ2

6(1 + σ)
(5.17)

In Fig. 5.2 we show the post shock quantities as a function of the magnetization. In the limit of small magnetizations
vd → c/3, while in the limit of high σ one has γd → σ. Note that downstream of the shock both pd and b2d are
much larger than ρdc2.

Figure 5.2: Jump conditions at the Termination Shock. Downstream value of the velocity (blue line) normalized
to the speed of light, pressure (green line), and magnetic energy density (red line) normalized to the upstream wind
ram pressure, as a function of the magnetization parameter.

5.2.2 Nebular Flow

It is evident that if the wind is still strongly magnetized upstream of the shock, the shock is weak and it is not
efficient in slowing down the flow. This is known as σ paradox. As we saw in Chapter 2.8 of the RMHD Notes
the pulsar outflows is expected to be still magnetically dominated at large radii, in ideal MHD. However, the
confinement by the SNR requires a small velocity achievable only with a small magnetization. Several solutions
have been proposed, ranging from dissipation of the excess magnetic field in the wind, in the nebula or at the shock
itself.
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Let us assume that a shock forms. The downstream flow will be subsonic, and such that the rest mass density
plays a negligible role in the flow dynamics. The typical timescale over which the pulsar wind evolves is of the
order of the spin-down timescale, thousands of years, while the typical sound crossing time in the PWN, given
the relativistic regime, is of the order of a light travel time, a few years. On the other hand the sound crossing
time is much longer than the pulsar spin- period. This implies that the nebula will relax instantaneously to secular
variations of the wind properties, and will be insensitive to variations at the magnetospheric pulsar timescale. Then
it is reasonable to assume that the PWN is in a steady state equilibrium with the injection condition at the TS. If
one assumes the flow to be purely radial, the equation for the conservation of the particles numbers (the rest mass)
reads:

γρvrr
2 = γdρdvdR

2
TS (5.18)

The radial momentum conservation reads:

c2∂r(p+ b2/2) + b2/r =
1

r2
∂r[γ

2(ρc2 + 4p+ b2)vrvrr
2] ' 1

r2
∂r[γ

2(4p+ b2)vrvrr
2] (5.19)

The total energy conservation reads:

γ2(ρc2 + 4p+ b2)vrr
2 ' γ2(4p+ b2)vrr

2 = γ2
d(4pd + b2d)vdR

2
TS (5.20)

And the magnetic flux conservation is:

γbvrr = γdbdvdRTS (5.21)

For σ � 1 the downstream flow will be magnetically dominated, b2 � p, so that we can neglect in the momentum-
energy conservation laws the pressure. Then Eq. 5.21 and Eq. 5.20 simplify to:

γbvrr = const γ2b2vrr
2 = const (5.22)

with solutions b ∝ r−1, and vr = const. One can show that this solutions also satisfy the momentum conservation
law, while the mass conservation gives ρ ∝ r−2 and the entropy conservation for a relativistic fluid gives p ∝
ρ4/3 ∝ r−8/3. We see that for large σ the post shock flow does not slow down.

For σ � 0.1 the downstream flow will be pressure dominated p � b2, so that we can neglect in the momentum-
energy conservation laws the magnetic field energy. Looking at the momentum conservation law Eq. 5.19 we see
that the left side is of the order of c2p/r while the right side if of the order of v2

rp/r, much smaller. So to an
approximation of the order v2

r/c
2, the momentum conservation implies p = const. This, by entropy conservation,

leads to ρ = const. Substituted in the mass conservation law this gives vr ∝ r−2, assuming γ ' γd ' 1. And by
magnetic flux conservation b ∝ r. This means that the magnetic energy will rise as r2, so that there will be a radius
where the flow becomes magnetically dominated. As we have seen previously when this happens the flow stops to
slow down and vr saturates at a finite value. One can then think a PWN as formed by two regions: an internal one
which is pressure dominated, and where the outflow slows down, and an outer one magnetically dominated, with a
constant radial expansion speed.

One can estimate the radius req at which this transition takes place and the value of the asymptotic speed. In the
internal region one has:

b2

p
≈ r2

R2
TS

B2
d

pd
≈ σ r2

R2
TS

→ req = RTS
√
σ−1 (5.23)

while the asymptotic speed will be:

vasy ≈ vd
R2
TS

r2
eq

≈ σ c
3

(5.24)

The requirement that the nebular outflow matches at the boundary the expansion speed of the PWN inside the
SNR, can be translated into an upper limit to the allowed value of wind magnetization: σ < 3Vpwn/c ∼ 0.001.
So the wind must be weakly magnetized. taking the upper limit of σ into Eq. 5.23, one finds that req ' Rpwn.
Equipartition is reached in the outer part of the PWN.
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5.3 PWNe Evolution

In this section we will develop a simplified model for the evolution of a PWN inside its parent SNR. A young
SNR can be described as a radially expanding sphere of ejecta (Fig. 5.3). As the ejecta expand following the
SN explosion, their density will scale as r−3. On the other hand for a non relativistic fluid p ∝ ρ5/3 so that
p/ρ ∝ r−2. It is reasonable to assume at the ejecta are cold, and to neglect their pressure. We have seen in the
previous section, that a PWN can be modelled as a subsonic bubble, of relativistic plasma with p� ρc2. We have
also seen that the confinement inside the SNR can only be achieved if the PWN is pressure dominated (reaching
magnetic equipartition only at the edge). This implies that the nebular pressure is almost constant inside. We will
then assume that inside the PWN the pressure is constant and neglect the magnetic field.

R
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EJECTA

SNR 
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ISM

ISM

SNR 
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EJECTA

PWN
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WIND
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Figure 5.3: Left panel: schematic representation of a PWN-SNR system in the early stages of evolution, when the
PWN expands inside the cold SNR ejecta. Right panel: same as left panel but now we show the typical density
structure. Various regions are shown in different colors. The yellow boundary marked as TS is the termination
shock.

5.3.0.1 The SN Ejecta We begin by modeling the structure of the density of the ejecta, as a function of the
radial coordinate r and the time t. For simplicity let us look for a self-similar solution of the form ρej ∝ t−αrβ ,
with α < 3 for the total ejecta mass to be finite. On the other hand we search a solution for the ejecta velocity as
vej ∝ rγt−δ . The mass conservation and the momentum conservation equations for a non relativistic fluid reads:

∂ρej
∂t

+
1

r2

∂

∂r
(ρejr

2vej) = −αρej
t

+ (2 + β + γ)
ρejvej
r

= 0 (5.25)

∂ρejvej
∂t

+
1

r2

∂

∂r
(ρejr

2v2
ej) =

∂vej
∂t

+ vej
∂

∂r
(vej) = −δ vej

t
+ γ

v2
ej

r
= γ

vej
r
− δ

t
= 0 (5.26)

(5.27)

The solution of these equations requires:

γ = 1 δ = 1 β = α− 3 (5.28)
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If the ejecta density are assumed to be constant in radius α = 0 then one can write:

ρej ∝ t−3 vej =
r

t
= Vo

r

Rej
(5.29)

where Rej = Vot is the outer radius of the ejecta. The value of the density and of the velocity are fixed once the
total ejecta mass and ejecta energy, which is just the SN explosion energy Esn, are known:

Mej = 4π

∫ Rej

0

ρejr
2dr Esn = 4π

∫ Rej

0

1

2
v2
ejρejr

2dr (5.30)

ρej =
3Mej

4πR3
ej

Vo =

√
10

3

Esn
Mej

(5.31)

where the integral is truncated at the outer radius of the ejecta, Rej .

5.3.1 The PWN

Let us call Rpwn the radius of the PWN as it expands inside the SNR ejecta. The only source of energy is the PSR
spin-down Ė, and if we neglect radiative losses, energy conservation reads:

Ė(t) =
dEpwn
dt

+ Ppwn
dVpwn
dt

=
d

dt
(4πR3

pwnPpwn) + Ppwn4πR2
pwn

dRpwn
dt

=

1

Rpwn

d

dt
(4πR4

pwnPpwn) ⇒ Ppwn =
1

4πR4
pwn

∫ t

0

RpwnĖdt (5.32)

Epwn =
4πR3

pwn

3

3

4πR4
pwn

∫ t

0

RpwnĖdt =
1

Rpwn

∫ t

0

RpwnĖdt (5.33)

where, for a relativistic gas, we have assumed that the energy density is three times the pressure. Eq.s5.32-5.33
relate the evolution of the pressure and energy of the PWN to the evolution of the radius and the PSR luminosity,
all of which are time dependent.

5.3.2 The Swept-up Shell

As the PWN expands it will push against the ejecta (themselves expanding) and will create a swept-up shell,
of shocked ejecta matter. Given that the pressure in the ejecta is negligible, the shock will be strong, and the
compression ratio is 4. The thickness ∆ of the shell can be estimated assuming that the density of shocked ejecta
inside the shell is four times the density of the unshocked ones, as it is expected for a strong shock. The total mass
in the swept-up shell Msh is just the mass originally contained by the ejecta inside the shell radius Rsh:

Msh =
4π

3
ρejR

3
sh = 4π(4ρej)R

2
sh∆ ⇒ ∆ =

1

12
Rsh (5.34)

The shell thickness is small and we can assume Rsh = Rpwn. This is known as thin shell approximation. All the
swept-up ejecta mass is confined within a thin shell with the radius equal to the one of the PWN.

The total energy of the shell is:

Esh =
1

2
MshṘ

2
sh =

1

2
MshṘ

2
pwn =

4π

6
ρejR

3
pwnṘ

2
pwn =

Mej

2

1

V 3
o t

3
R3
pwnṘ

2
pwn (5.35)
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The evolution of this mass of swept-up material is just given by the balance of the PWN pressure from the interior
and the ram pressure of the ejecta into which it is expanding.

MshR̈pwn = 4πR2
pwn[Ppwn − ρejV 2

rel] with Vrel = Ṙpwn −
Rpwn
t

(5.36)

where the velocity of the ejecta just upstream of the shell is Rpwn/t according to Eq. 5.29.

5.3.3 Self-Similar Solution

Given that the typical spin-down timescales for young PSR are of the order of a few thousands of years, it is
reasonable to assume that for young PWNe the pulsar spin-down luminosity is constant. Then conservation of
energy for the entire system of the PWN plus the swept-up shell can be written as:

Ėt+ Eini = Epwn + Esh (5.37)

where Eini is the energy already contained in the swept-up ejecta;

Eini = 2π

∫ Rpwn

o

ρejv
2
ejr

2dr =
3Mej

2V 3
o t

3

∫ Rpwn

o

r2

t2
r2dr =

3MejV
2
o

10

(
Rpwn
Vot

)5

= Esn

(
Rpwn
Vot

)5

(5.38)

If we assume a powelaw expansion for the PWN radius Rpwn = Ctξ then, recalling Eq. 5.33 and 5.35, Eq. 5.37
can be rewritten as:

Ėt+ Esn

(
C

Vo

)5

t5ξ−5 =
Ėt

ξ + 1
+
Mej

2V 3
o

C5ξ2t5ξ−5 (5.39)

ξ

ξ + 1
Ėt = C5 2ξ2

3

Esn
V 5
o

t5ξ−5 (5.40)

The solution is:

ξ = 6/5 C ' 0.9 ⇒ Rpwn = 0.9

(
Ėt

Esn

)1/5

Vot ∝ t6/5 (5.41)

5.3.4 Interaction with the SNR

Eq. 5.41 shows that the PWN has a slightly accelerated expansion inside the ejecta. On the other hand the SNR
shell that forms at the outer edge of the SNR due to the interaction with the ISM has a decelerated expansion
described by the Sedov law:

Rsnr '
(
Esn
ρism

)1/5

t2/5 (5.42)

The free expansion inside the cold ejecta will then termite once the PWN reaches the SNR shell:(
Ėt

Esn

)1/5

Vot ' Rpwn = Rsnr '
(
Esn
ρism

)1/5

t2/5 (5.43)

tr ≈
M

5/8
ej

E
1/8
sn Ė1/4ρ

1/4
ism

≈ 104yr

(
Mej

10M�

)5/8(
Esn

1051erg

)−1/8
(

Ė

1038erg s−1

)−1/4 ( nism
1cm−3

)1/4

(5.44)

The free expansion inside the cold ejecta will terminate after a few thousands of years. So the starting assumption
of an almost constant PSR spin down luminosity is consistent.
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5.3.5 Late Time Evolution

The interaction of the PWN with the SNR shell can be quite complex in its initial phases. It is possible however
to derive how the PWN will evolve inside the parent SNR at late time, once the SNR-PWN system is completely
relaxed into its asymptotic state. This happens after a few tr. At this point the PSR spin down luminosity can be
quite weak, and to a first approximation one can assume that its contribution to the PWN energy is negligible. In
this case the relativistic PWN will evolve adiabatically with Ppwn ∝ R−4

pwn. On the other hand the SNR will be
fully relaxed to the self similar Sedov solution, with the interior pressure Psnr ' ρismṘ

2
snr ∝ t−6/5. Assuming

pressure equilibrium between the PWN and the interior of the SNR one has: Rpwn ∝ t3/10.

PSR are known to have high kick velocity, due most likely to anisotropies in the SN explosion whence they
originate. Typical speeds are Vpsr ∼ 200 km s−1. One can expect such PSRs to emerge from their parent SNR at
a typical time:

tescVpsr = Rsnr =

(
Esn
ρism

)1/5

t2/5esc

⇒ tesc ≈
(
Esn
ρism

)1/3(
1

Vpsr

)5/3

≈ 2× 105yr

(
Esn

1051erg

)1/3(
Vpsr

200km s−1

)5/3 ( nism
1cm−3

)−1/3

(5.45)

5.4 PWNe Emission

Let us assume for simplicity that the PWN expands at a constant rate Ṙ such that R = Ṙt ∝ t instead of R ∝ t6/5
as we found in Sec. 5.3, and that the pulsar spin-down luminosity Ė is constant. These are minor simplifications
for a young PWN, and yet they afford a substantial simplification in the following analysis. The total energy in
the nebula can be evaluated using Eq. 5.33, and assuming the magnetic energy is a constant fraction η of the total
nebular energy one has:

Epwn =
Ėt

2

B2

8π
= η

Ėt

2

3

4πR3
⇒ B2 = η

3Ėt

R3
= η

3Ė

Ṙ3t2
(5.46)

The strength of the magnetic field drops linearly in time.

5.4.1 Particles Losses

For a system composed of particles with energy E, subject to adiabatic losses in an expanding sphere of volume V
and radius R, one finds:

d(NE) = −PdV = − (EN)

3V
dV ⇒ dE = −E

3

dV

V
= −EdR

R
⇒ dE

dt
= −E Ṙ

R
(5.47)

where N = const is the total particle number, and we have assumed relativistic particles for which P = EN/3V .
The energy losses in this case are usually referred as adiabatic losses.



76 PULSAR NEBULAE

A particle of energy E in a magnetic field of strength B will also loose energy because of synchrotron losses
according to:

dE

dt
= −4

9

e4

m4c7
B2E2 = −c1B2E2 with c1 =

4

9

e4

m4c7
(5.48)

where m is the particle mass (in our case electrons/positrons) and e its charge, while the factor 4/9 comes from
averaging over pitch angle, in the particle distribution function.

The time evolution of a particle energy is determined by the combination of adiabatic losses due to the nebular
expansion and of synchrotron losses in the nebular magnetic field:

dE

dt
= −E Ṙ

R
− c1B2E2 ⇒ 1

RE2

dE

dt
= − 1

RE

Ṙ

R
− c1

B2

R
⇒ d

dt

(
1

ER

)
= c1

B2

R
(5.49)

which trivially integrates between a reference initial time ti (for example the time the particle was injected) and a
final time t as:

1

EṘt
− 1

EiṘti
=

∫ t

ti

c1η
3Ė

Ṙ4t3
= c1η

3Ė

2Ṙ4

[
1

t2i
− 1

t2

]
⇒ 1

Et
− 1

Eiti
= c1η

3Ė

2Ṙ3

[
1

t2i
− 1

t2

]
(5.50)

Looking at eq. 5.49 one sees that for particles with:

E
Ṙ

R
� c1B

2E2 ⇒ E � Ṙ3

3c1ηĖ
t (5.51)

synchrotron losses dominate over adiabatic losses and viceversa at lower energies. While from Eq. 5.50 one finds
that particles injected at time ti with infinite energy Ei →∞ will have at time t an energy:

E(t) =
2Ṙ3t2i
3c1ηĖt

(5.52)

Consider now particles which were injected at energies such that:

Ei �
2Ṙ3

3c1ηĖ
ti (5.53)

then one has

1

Et
=

1

Eiti
+ c1η

3Ė

2Ṙ3

[
1

t2i
− 1

t2

]
� +c1η

3Ė

2Ṙ3

[
2

t2i
− 1

t2

]
> +c1η

3Ė

2Ṙ3

[
1

t2

]
⇒ E � 2Ṙ3

3c1ηĖ
t (5.54)

so these particles will always (at any time t > ti) loose energy in the adiabatic dominated regime. In this case
neglecting the synchrotron term in Eq. 5.50 one can recast the condition of Eq. 5.53 into a condition on the energy
E at time t, and the injection time:

E � 2Ṙ3

3c1ηĖt
t2i (5.55)

Consider instead particles with an energy such that:

E � 2Ṙ3

3c1ηĖ
t (5.56)
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In this case one finds:

1

Eiti
=

1

Et
− c1η

3Ė

2Ṙ3

[
1

t2i
− 1

t2

]
� +c1η

3Ė

2Ṙ3

[
2

t2
− 1

t2i

]
< +c1η

3Ė

2Ṙ3

[
1

t2i

]
⇒ Ei �

2Ṙ3

3c1ηĖ
ti (5.57)

so these particles have always (at any time ti < t) lost their energy mostly due to synchrotron.

There is also range of particles with energy such that:

E <
2Ṙ3

3c1ηĖ
t Ei >

2Ṙ3

3c1ηĖ
ti ⇒ E >

2Ṙ3

3c1ηĖt
t2i (5.58)

which are now loosing their energy mostly by adiabatic losses, but in the past have been loosing their energy mostly
via synchrotron.

5.4.2 Particles Distribution

Let us name Ṅ(E, t) the number of particles injected into the nebula per unit time per unit energy interval. Such
number is normalized according to:

(1− η)Ė =

∫ Emax

o

Ṅ(E, t)Edt (5.59)

where Emax is the maximum energy at injection. We shall assume that injection obeys a simple power-law
Ṅ(E) = KE−γ , constant in time. For γ > 2 the value of Emax can be set to infinity. For γ < 2 injection
must have a cutoff at finite energy to satisfy Eq. 5.59. One can use Eq. 5.50 to relate the energy of a particle at
a given time t to the energy it had at a previous time ti, or equivalently to relate the time of injection ti to the
inejction energy Ei and final energy E at time t, ti = ti(E, t, Ei). Then one has :

dN(E, t, Ei)dE = Ṅ(Ei, ti(E, t, Ei))dtidEi (5.60)

where dN(E, t, Ei)dE is the number of particles with energy betweenE andE+dE at time t, which were injected
with initial energy Ei, between time ti(E, t, Ei) and ti(E, t, Ei) + dti. dEi is the initial energy range ending into
dE at time t. The the total number is found integrating over all energies Ei > E (there are only losses):

N(E, t) =

∫ ∞
E

Ṅ(Ei, ti(E, t, Ei))
∂ti
∂E

dEi (5.61)

where N(E, t) is the total number of particles with energy between E and E + dE at time t.

Let assume that the injection process begins at a time to. One can divide the energy into three intervals:

Range A :

0 < E <
2Ṙ3

3c1ηĖt
t2o <

2Ṙ3

3c1ηĖt
t2i for any ti > to (5.62)

Particles in this range come from particles which were injected with an initial energy so small to be subject
solely to adiabatic losses, as Eq. 5.55.
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Range B :

2Ṙ3

3c1ηĖ
t < E (5.63)

Particles in this range come from particles which were injected with an initial energy so high to be subject
solely to synchrotron losses, as Eq. 5.56.

Range C :

2Ṙ3

3c1ηĖt
t2o < E <

2Ṙ3

3c1ηĖ
t (5.64)

Particles in this range come both from particles which were injected at time ti >
√

(3c1ηĖEt)/(2Ṙ3) (as

Eq. 5.55) and so have only suffered adiabatic losses ad those injected at time to < ti <
√

(3c1ηĖEt)/(2Ṙ3)

which where injected with an initial energy so high to be subject initially to synchrotron losses as Eq. 5.56.

For particles in Range A, that lost their energy always in the adiabatic dominated regime, neglecting the synchrotron
term in Eq. 5.50 one has:

ti = t
E

Ei
⇒ Ei = E

t

ti

∂ti
∂E

=
t

Ei
Ei <

2Ṙ3

3ciηĖ

E

Ei
t⇒ E2

i <
2Ṙ3

3c1ηĖ
Et (5.65)

then substituting into Eq. 5.61 one finds:

N(E, t) =

∫ Et/ti

E

KE−γi
t

Ei
dEi =

∫ Et/ti

E

KE−γ−1
i tdEi = −Kt

γ
E−γ

∣∣∣∣Et/ti
E

⇒ Kt

γ
E−γ for γ > 0, ti � t (5.66)

The particle spectrum is a powerlaw with the same index as the injection spectrum and a normalization that rises
linearly in time.

For particles in Range B, that lost their energy always in the synchrotron dominated regime, neglecting the adiabatic
term in Eq. 5.50, and imposing condition Eq. 5.56 one has:

Et =
2Ṙ3

3c1ηĖ

t2i t
2

t2 − t2i
� 2Ṙ3

3c1ηĖ
t2 ⇒ ti ' t (5.67)

∂E

∂t
= −c1B2E2 ⇒ ∂ti

∂E
= −∂ti

∂t

∂t

∂E
= − Ṙ3

3c1ηĖ

t2

E2
(5.68)

Then substituting into Eq. 5.61 one finds:

N(E, t) = −
∫ Emax

E

KE−γi
Ṙ3

3c1ηĖ

t2

E2
dEi = −

∫ Emax

E

KE−γi
Ṙ3t2

3c1E2ηĖ
dEi =

=
KṘ3t2

3c1E2ηĖ(γ − 1)
E1−γ

∣∣∣∣Emax

E

⇒ KṘ3t2

3c1ηĖ(γ − 1)
E−γ−1 for γ > 0, Emax � E (5.69)

The particle spectrum is again a powerlaw but now the index is reduced by unity with respect to the injection, and
the normalization rises quadratically in time.
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Finally one can consider particles in Range C, where there is mixed contribution. The particles injected at ti >√
(3c1ηĖEt)/(2Ṙ3) have injection energy below the threshold energyEref set by the second relation in Eq. 5.65,

and so follow a purely adiabatic evolution. The particles injected at ti <
√

(3c1ηĖEt)/(2Ṙ3) have injection
energy above the threshold energy Eref . Given that the synchrotron dominated phase has t ' ti, synchrotron
losses are almost instantaneous such that particles injected above Eref , immediately go to Eref , after which they
evolve adiabatically. Then one has:

E2
ref =

2Ṙ3

3c1ηĖ
Et ti = t

E

Ei
' t E

Eref
=

√
3c1ηĖ

2Ṙ
Et⇒ ∂ti

∂E
=

√
3c1ηĖ

8Ṙ

t

E
(5.70)

Then substituting into Eq. 5.61 one finds:

N(E, t) =

∫ Eref

E

t

Ei
KEγi dEi +

∫ Emax

Eref

KE−γi

(
Ṙ3t2

3c1ηĖE

)1/2

dEi (5.71)

Where the first integral takes the contribution from those particles which were subject only to adiabatic losses,
while the second, takes all particles injected at Ei > Eref , and evolve them as if they were all injected at Eref and
subject just to the remaining adiabatic losses, as discusses above. It is evident that for γ > 1 it is always the lower
extreme of the first integral that dominates, so that even in Range C:

N(E, t) =
Kt

γ
E−γ (5.72)

So the total particle spectrum will be given by a broken powerlaw, with low energy index −γ, a high energy index
−γ − 1, and a break energy Eb that corresponds to the energy of particles whose synchrotron lifetime is equal to
the age of the nebula:

Eb =
2Ṙ3

3c1ηĖ
t ⇒ c1B

2E2
b =

3c1ηĖ

Ṙ3t2
E2
b '

Eb
t

(5.73)

The break energy gets larger in time with N(Eb, t) ∝ t1−γ , while the overall normalization rises. An example of
how the spectrum evolves, is shown in Fig. 5.4.

5.4.3 Synchrotron Spectrum

Once the particle energy distribution is known one can easily derive the spectrum. The radiation mechanism is
synchrotron from the particles gyrating in the nebular magnetic field.

A particle with energy E in a magnetic field of strength B radiates most of its energy around a critical frequency:

νc =
e

m3c5
BE2 = c2BE

2 (5.74)

Under the monochromatic approximation we will assume that all the energy is radiates at the frequency ν = νc.
Then, using eq. 5.48, one can write for the energy emitted per unit time per unit frequency, the so called spectral
density:

S(ν) =−
(
dE

dt

)
syn

N(E)
dE

dν
= c1B

2E2N(E)
1

2c2EB
=
c1
c2

BE

2
N(E) =

=
c1
2
B

(
Bν

c32

)1/2

N

((
Bν

c32

)1/2
)

(5.75)
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Figure 5.4: Left panel: evolution of the particle distribution as a function of energy inside a PWN (from the red
curve at earlier times to the purple curve at later times), for a single power-law injection. Right panel: evolution of
the spectral density as a function of frequency (for γ < 2).

where B and N are also time dependent.

It is evident that the existence of a break in the particle spectrum causes a break also in the spectral density.
Recalling that the break energy is given by Eq. 5.73, and that the magnetic field evolves according to Eq. 5.46, the
break frequency is:

νb ' 4t

(
Ṙ3

3c1ηĖ

)3/2

(5.76)

which moves to higher energy in time.

Recalling that the particle spectrum is given by Eq. 5.72 at energy below Eb and by Eq. 5.69 above Eb, the spectral
density will be:

S(ν) =
Kc2
2γ

(
3ηĖ

Ṙ3

)(γ+1)/4

c
(γ−3)/2
2 t(1−γ)/2ν(1−γ)/2 for ν < νb (5.77)

S(ν) =
Kc2

2γ − 2

(
3ηĖ

Ṙ3

)(γ−2)/4

c
(γ−2)/2
2 t1−γ/2ν−γ/2 for ν > νb (5.78)
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The spectrum is also a broken power-law and the spectral index is directly related to the index of the particle
distribution. Note that for 1 < γ < 2, the spectral density below Eb drops in time while above Eb it rises. For
γ > 2 it drops in both ranges.

One can also compute the total synchrotron luminosity of the nebula:

Lsyn =

∫ νmax

0

S(ν)dν =
Kc2
2γ

(
3ηĖ

Ṙ3

)(γ+1)/4

c
(γ−3)/2
2 t(1−γ)/2

∫ νb

0

ν(1−γ)/2dν +

+
Kc2

2γ − 2

(
3ηĖ

Ṙ3

)(γ−2)/4

c
(γ−2)/2
2 t1−γ/2

∫ νmax

νb

ν−γ/2dν (5.79)

where νmax is the frequency corresponding to Emax. For γ < 2 the luminosity is mostly (logarithmically) due to
the highest energy photons at νmax. For γ > 3 the luminosity is due to the lowest energy photons. For 2 < γ < 3,
assuming Emax � Eb the integral is:

Lsyn =
Kc2
2γ

(
3ηĖ

Ṙ3

)(γ+1)/4
c
(γ−3)/2
2

t(γ−1)/2

2ν
(3−γ)/2
b

3− γ +
Kc2

2γ − 2

(
3ηĖ

Ṙ3

)(γ−2)/4
c
(γ−2)/2
2

tγ/2−1

2ν
(2−γ)/2
b

γ − 2
(5.80)

∝ t2−γ (5.81)

The luminosity is dominated by photons emitted around νb and drops in time less than linearly (for γ close to 2 the
luminosity remains almost constant.

5.4.4 IC Emission

PWNe are known to emit also at TeV energies. Such emission cannot be due to synchrotron. The maximum
synchrotron frequency emittable by a particle, corresponds to a particle energy for which the synchrotron cooling
time τs equals the gyration time τg . At higher energy a particle will loose all of its energy before completing an
orbit, and emitting a synchrotron photon. This condition is:

τg =
E

eBc
=

E

c1E2B2
= τs ⇒ E2 =

ec

c1B
⇒ ν =

c2ec

c1
hν =

hc

e2
mc2 ' 100 MeV (5.82)

The TeV emission is due to IC scattering of a background photon field. The usual photon fields for PWNe are:
the CMB which is well known; the Galactic background whose local value is known within a factor a few (it is
strongly influenced by the presence of nearby sources); the synchrotron field from the PWN itself (important only
for young bright objects i.e. just the Crab Nebula).

The CMB photons have typical energy ∼ 3 × 10−4 eV, so IC on the CMB will happen in the Thompson regime
for:

10−4 E

mec2
< 0.1 MeV ⇒ E < 109mec

2 (5.83)

higher that the maximum energy achievable using the full potential drop of the PSR, which constitute the acceler-
ation limit for a PSR powered system. So IC-CMB is always in the Thompson regime.
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The Galactic background photons have typical energy ∼ 0.01 − 0.1 eV, so IC on the CMB will happen in the
Thompson regime for E < 106 − 107mec

2. This exclude most of the particles, except perhaps the highest energy.

In the Thomson regime the IC luminosity from a particle with energy E in a photon field of energy density U is:(
dE

dt

)
IC

= 8πc1UE
2 = c3UE

2 at ν = νph
4

3

(
E

mec2

)2

' νph
(

E

mec2

)2

(5.84)

where νph if the typical photon frequency of the background, and the 4/3 comes from averaging over an isotropic
photon background. For a black body (as the case for CMB) this is related to the energy density of the photon field
by:

νph ' 3
kbT

h
' kb

h

(
U

a

)1/4

⇒ ν = c4U
1/4E2 (5.85)

where kb is the Boltzmann constant, T the temperature, and a the black body constant.

By comparison to Eq. 5.48 one sees immediately that the IC spectral density in the Thompson regime will have
similar trends as for synchrotron. There is an energy break:

νs = c4(aT )1/4

(
2Ṙ

3c1ηĖ

)2

t2 ∝ t2 (5.86)

And the spetrum will be:

S(ν) =−
(
dE

dt

)
IC

N(E)
dE

dν
= c3UE

2N(E)
1

2c4EU1/4
=
c3
2

EU3/4

c4
N(E) =

=
c3
2

(
νU5/8

c34

)1/2

N

((
ν

c4U1/4

)1/2
)

(5.87)

That gives:

S(ν) =
Kc3
2γ

c
(γ−3)/2
4 a(5+γ)/8T (5+γ)/2tν(1−γ)/2 for ν < νs (5.88)

S(ν) =
Kc3

2γ − 2

Ṙ3

3c1ηĖ
c
(γ−2)/2
4 a(6+γ)/8T (6+γ)/2t2ν−γ/2 for ν > νs (5.89)

(5.90)

a broken power-law with the same spectral index as for the synchrotron. Unlike synchrotron however, the CMB
and Galactic background do not change in time as the magnetic field does, so the temporal dependence is different.
The break frequency has also a different temporal behavior.

Again for 2 < γ < 3, the IC luminosity is dominated by photons with a frequency ν = νs = νphE
2
b /me

2c4. The
IC spectrum reproduces at higher energy the synchrotron spectrum. Given the different temporal dependence, the
IC luminosity grows in time as t4−γ . The ratio of IC luminosity to synchrotron luminosity, is nothing else than
the ratio of the magnetic field energy density to the photon field energy density, and can be used to estimate the
magnetic field in the nebula, once the photon field is known (as for CMB):

Lsyn
LIC

=
B2

8πU
∝ t−2 (5.91)
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5.5 Cooling

Let us consider a system in an initial state |i〉 decaying into a final state |f〉, fully characterized by all its quantum
numbers. The decay rate for the transition is:

R =
2π

~
|〈f |H|i〉|2 =

2π

~
|Hi→f |2 (5.92)

where H is the Hamiltonian of the decay. If the system, from the initial state |i〉, can decay into m final states |fj〉,
then the total decay rate of the state |i〉 is:

R =
2π

~

m∑
j=1

|〈fj |H|i〉|2 =
2π

~

m∑
j=1

|Hi→fj |2 (5.93)

If |Hi→fj | is the same for all fj (i.e. if |fj〉 are degenerate for the Hamiltonian H), then one has:

R =
2π

~
m|Hi→f |2 (5.94)

where we set |Hi→fj | = |Hi→f |. More generally if the final state |f〉 has a degeneracy g (density of final states
around available final state energy) then:

R =
2π

~
g|Hi→f |2 (5.95)

which is just the Fermi Golden Rule.

Let us consider the β-decay reaction for a free neutron into a proton, and electron and a neutrino:

n→ p+ e+ ν̄ (5.96)

assuming for simplicity that the decay is due to a “contact interaction” of strength G (Fermi constant) among the
particles involved (the neutron will decay into a proton at its same exact position). This mean that Hamiltonian of
the interaction can be describes as a Dirac delta in space, over the position x′ of the neutron H = Gδ(x− x′):

|Hi→f | = 〈peν̄|H|n〉 = G

∫
(ψ∗ν̄ψ

∗
eψ
∗
p)ψnd

3x (5.97)

where ψ are the various wave functions.

Given that the mass difference between the neutron and the proton E ∼ 8 MeV is much smaller that the mass of
the proton, but much larger that that either the mass of the electron or the anti-neutrino, the proton will be almost
at rest. On the other hand the typical wavelength of the leptons will be ∼ ~/p ∼ ~c/E � 10−13 cm, the typical
sizes of the proton and neutron. Neclecting Coulomb corrections for the electron due to the proton, and given that
leptons do not feel the strong force, one can assume both leptons to be described by plane waves:

ψν̄ = e−iq·x/~ and ψe = e−ip·x/~ (5.98)

where q and p are the omentum of the anti-neutrino and electron respectively, and we have assume unitary volume
for simplicity. Then

|Hi→f | = G

∫
ψ∗pψne

i(p+q)·x/~d3x (5.99)

= G

∫
ψ∗pψnd

3x + iG

∫
ψ∗pψn

(p + q) · x
~

d3x (5.100)
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And assume that the β-decay is meadiated by

Given that the neutron to proton mass difference, i.e. the energy released in the decay, is small compare to the mass
of the proton, one can use the Fermi Golden rule:

R =
2π

~

1

2

∑
spins

|Hfi|

 d3pe
(2π~)3

d3pν̄
(2π~)3

(5.101)

let us consider the following reaction involving n initial particles X1, ...., Xm and leading to m final particles
Y1, .....Ym, mediated by an interaction Hamiltonian H:

X1 +X2 + .....+Xn → Y1 + Y2 + .....+ Ym (5.102)

then the rate of trasition form an initial state |1, 2, ....n〉 to a final state |1′, 2′, ....m′〉 is:

R =
2π

~
|〈1′, 2′, ....m′|H|1, 2, ....n〉|2 (5.103)

where we have assumed the states to be fully characterized (no degeneracy).

If we wish to know the differential rate of transitions of a system having f1(e1) particles X1 in the energy range
[e1, e1 + de1], f2(e2) particles X2 in the energy range [e2, e2 + de2],....., fn(en) particles Xn in the energy range
[en, en + den], and leagind to particles Y1 with energy in the range [e′1, e

′
1 + de′1], Y2 with energy in the range

[e′2, e
′
2 + de′2], ..... Ym with energy in the range [e′m, e

′
m + de′m] then we have:

dR =
2π

~
|〈1′, 2′, ....m′|H|1, 2, ....n〉|2 (5.104)
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