¹³C fractionation in PDRs

V. Ossenkopf-Okada, M. Röllig

I. Physikalisches Institut der Universität zu Köln

Volker Ossenkopf-Okada

¹³C fractionation in PDRs

Fractionation workshop

Florence, 10/13/16

¹³C chemistry

Fractionation reaction

 $^{13}C^+ + CO \Longrightarrow C^+ + {}^{13}CO + 34.8 \text{ K}$

drives a different chemistry for ¹²C and ¹³C

- Relevant for photodissociation regions (PDRs) with significant fraction of C⁺
- ¹²C⁺/¹³C⁺ can be enhanced by factor > 100

Chemical structure of a 100M_{\odot} PDR for χ =1000 χ_0

Input: the elemental ratio

- Optically thin C¹⁸O and ¹³C¹⁸O should directly measure the elemental abundance ratio (Langer & Penzias 1990, 1993, Keene et al. 1998)
- Dependence on Galactocentric radius:

Langer & Penzias (1993)

• Average at solar Galactocentric radii: $ER = {}^{12}C/{}^{13}C \approx 60$

[CII]/[¹³CII] in NGC7023

Spitzer IRAC (Joblin et al. 2008) Observations at northern point

Volker Ossenkopf-Okada

¹³C fractionation in PDRs

HIFI observations of C⁺ and ¹³C⁺ at 158µm:

• Intensity ratio: [12CII]/[13CII]=51

[¹³CII] hyperfine components compared to [CII] scaled by normal HF ratio and FR=60 for optically thin emission (Ossenkopf et al. 2013)

Fractionation workshop

Florence, 10/13/16

Testing the elemental ratio

Temporary conclusion:

- Elemental ratio lower than derived before
 Weak fractionation in C⁺
 - Weak fractionation in C⁺

Volker Ossenkopf-Okada

¹³C fractionation in PDRs

But ...

If C⁺ is affected by fractionation, C¹⁸O should be affected too!

- Model: ¹³C¹⁸O enhanced relative to C¹⁸O at A_V ≈ 1..5
- At those depths the gas is warm → combined effects of fractionation and excitation

Abundance and J=5-4 emissivity of ${}^{13}C{}^{18}O$ and $C{}^{18}O$ in the 100M $_{\odot}$ PDR

For the A_v = 6.5 of NGC7023,

we get an emissivity ratio of 39 for a standard abundance ratio $C/^{13}C=67$.

Volker Ossenkopf-Okada

¹³C fractionation in PDRs

Fractionation workshop

All previous analyses based on J=1-0 and J=2-1 are also affected

\rightarrow Model abundances wrong by 10-20%

Correcting Langer & Penzias (1993) for fractionation gives consistent picture:

New average at solar Galactocentric radii: *ER*=¹²C/¹³C ≈ 67

Why is $[CII]/[^{13}CII]$ then < 67?

• Intensity ratio rather governed by the optical depth of the [CII] line

Volker Ossenkopf-Okada

How to decide about fractionation?

Which scenario holds?

- *ER*=38, no fractionation
- *ER*=67, C⁺, ¹³C¹⁸O fractionated

Other species also affected!

- Chain of species produced from C⁺
- CH inherits C⁺ fractionation

¹²CH/¹³CH enhanced

Chemical structure of the $100M_{\odot}$ PDR in C⁺, ¹³C⁺, CH, and ¹³CH

Same effect also in Roueff et al. (2015) for time-dependent model

• CH fractionation is strong where CH is abundant!

Volker Ossenkopf-Okada

¹³C fractionation in PDRs

Fractionation workshop

Florence, 10/13/16

CH fractionation

Integrated CH/¹³CH column density ratios for spherical PDRs

- All models with high CH column density also show high fractionation
- CH is the ideal fractionation tracer.

Volker Ossenkopf-Okada

¹³CH

Measuring CH and ¹³CH

Observation

- 536 GHz ground state line
- CH is also partially optically thick
- But: line split into multiple HF components
- Can be used to correct for optical depth by simultaneously fitting all three components
- Fit good, but not perfect.
- Possible uncertainty in line frequencies (?)

¹³CH

T-corrected CH profile measures total CH abundance:

 Allows to simulate the ¹³CH profile for a given abundance ratio

• But: Non-detection

 Way forward: Can we constrain the ¹³CH column from the non-detection? ¹³CH 536GHz spectrum simulated from the measured CH spectrum, corrected for optical depth, and abundance ratio of 67 and the different hyperfine ratios

Fractionation workshop

Exploit the non-detection

Quantify non-detection through statistical likelihood:

- Compute likelihood of measured spectrum for ¹³CH models computed for different CH/¹³CH abundances
- Model with CH/¹³CH > 200 has maximum likelihood
- Models with CH/¹³CH < 67 can be excluded with 99% confidence
- Models with CH/¹³CH < 107 can be excluded with 67% confidence
 - \rightarrow Fractionation by factor 1.5

Likelihood of model match to observed spectrum as a function of the CH/¹³CH abundance ratio

Fractionation workshop

Conclusions

- Detecting ¹³C⁺ with HIFI or GREAT is easy
- But: For most PDRs [CII] is optically thick
 - [CII]/[¹³CII] dominated by opt. depth, not chemical fractionation
- C¹⁸O/¹³C¹⁸O always assumed to trace the elemental ratio
- But: Is also affected by chemical fractionation
 - Matches NGC 7023 observations for the standard the C/¹³C=67 ratio.
- ¹³CH should be best fractionation tracer
- But: Detecting ¹³CH is very hard
 - Non-detection proves slight fractionation (factor 1.5).

\rightarrow Clear observational proof of ¹³C fractionation (C¹⁸O and CH).

Volker Ossenkopf-Okada

Fractionation workshop