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• This talk:

– Palla & Stahler’s accelerating star formation
– Cloud assembly and hierarchical collapse.
– Evolution of the SFR.
– Resulting cluster structure features.
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• Most stars seem to form over short SF burst.
• But with tail of older objects.

• No room for accelerating SF in models for SFR based on 
clouds in equilibrium, and SF controlled by stationary 
turbulent parameters (e.g., Krumholz & McKee 05; Padoan & 

Nordlund 11; Hennebelle & Chabrier 11).
• ... which give stationary SFR, reported as SFE per 

free-fall time.
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• Discrepancy!
– For some time, LH thought old stars were due to 

contamination from field stars...
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I. CLOUD ASSEMBLY
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• How do dense clouds form? (before any cloud collisions 
may happen...)

• From the continuity equation, the formation of dense 
regions in a compressible medium requires the 
convergence of material toward the concentration 
point:

 Dense, cold clouds must  form by converging 
flows

(In general; not a particular type of setup)
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• Converging flows in the WNM induce a phase 
transition to the CNM (Hennebelle & Pérault 99; Ballesteros-
Paredes+99; Koyama & Inutsuka 02; Heitsch+05,06; Vázquez-

Semadeni+06, 07).

– Clouds are most often born as moderately-supersonic 
atomic sheets (VS+06, ApJ, 643, 245; compare to Heiles & 
Troland 2003).

• Cloud boundaries are phase transition fronts, not 
isolating walls (Vázquez-Semadeni+06; Bannerjee+09).

• Clouds’s mass grows.

WNM
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– The CNM clouds quickly become strongly Jeans 
unstable because, upon the WNM  CNM transition:

  102 ,    T  10-2 T 

– Jeans mass drops from ~107 to ~103 Msun.

– The turbulence is moderately supersonic (Ms ~ a few; 
Koyama & Inutsuka 02; Audit & Hennebelle 05; Heitsch+05; 
Banerjee+09).

The collapse starts at the cloud scale.

 Jeans mass, MJ ~ -1/2 T3/2, drops by ~ 
104 upon warm-cold transition (Gómez & 
VS 2014, ApJ, 791, 124).
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• Global collapse of turbulent, non-spherical medium is 
hierarchical... (Vázquez-Semadeni+09, ApJ, 707, 1023).

– Turbulence produces a distribution of (nonlinear) density 
fluctuations of various sizes and amplitudes.

• Implies a distribution of free-fall times. Small-scale, high-density 
fluctuations have shorter free-fall times (Heitsch & Hartmann 08) 
than the large-scale, low-density fluctuations that contain them.

 A distribution of Jeans masses (see also Padoan & Nordlund 02).

Heitsch & 
Hartmann 08
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Small-scale collapses 
are part of large-scale 
ones.

Small-scale objects 
collapse first because 
of their higher 
densities.

Similar to Hoyle’s 
(1953)  fragmentation, 
but with nonlinear 
fluctuations and 
filament formation.

VS+2009, ApJ, 707, 1023

Gómez & VS, 2014, ApJ, 791, 124
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• Consequences of multi-Jeans, nearly pressureless 
collapse:
– Formation of filaments as gas funnels toward cores (not 

equilibrium structures) (Gómez & VS 14, ApJ, 791, 124).
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Gómez & VS 2014, 
ApJ, 791, 124
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• Consequences of multi-Jeans, nearly pressureless 
collapse:
– Formation of filaments as gas funnels toward cores (not 

equilibrium structures) (Gómez & VS 14, ApJ, 791, 124).

– SF accelerates! (Zamora-Avilés et al., 2012, ApJ, 751, 77;   
ZA & VS 2014, ApJ, 793, 84)



AN ANALYTICAL MODEL 
FOR THE EVOLUTION OF 

THE SFR
Zamora-Avilés et al., 2012, ApJ, 751, 77;   

ZA & VS 2014, ApJ, 793, 84
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• Most analytical models for the SFR in molecular clouds (e.g., Krumholz 

& McKee 2005; Padoan & Nordlund 2011; Hennebelle & Chabrier 2011) are 
stationary. They:
– Assume a lognormal density PDF (Vázquez-Semadeni 1994):

– Assume SFR is given by mass fraction above some nsf divided by 
characteristic timescale.

• Models differ in choice of nsf and timescale (Federrath & Klessen 12).

• Typically predict SFRff (actually, SFE per free-fall time).

log n [cm-3]

Volume 
fraction

M/ff = SFR

nsf
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A simple analytical, evolutionary model: (Zamora-Avilés et al., 

2012, ApJ, 751, 77;   ZA & VS 2014, ApJ, 793, 84)

• Including:
– Accretion onto cloud (mass growth).
– Global gravitational contraction (variation of density PDF) .

 nsf

t

Implication: SFR must 
increase with time
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• Next:

– Assume IMF, compute number of massive stars.

– Compute rate of mass ionization by massive stars in cloud 
(Franco+94).

– Follow evolution of cloud’s mass, size, density and SFR.

– Main controlling parameter is total cloud mass 
• (for CNM initial conditions). 
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SFR evolves (increases, then comes back down, or shuts off):

Zamora-Aviles & VS 2014, ApJ, 793, 84
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• Because SF accelerates, stellar population of an evolved 
star-forming region consists of:

– Older, scarce component formed by early, low-mass, low-
SFR, and

– Younger, more abundant component formed at later, 
massive, high-SFR burst.

2000-Msun model:

Analytical model by 
Zamora-Avilés+12, ApJ, 751, 77

Consistent with age histograms 
in embedded clusters by Palla & 
Stahler  1999, 2000.
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– Evolution of GMCs’ stellar population (M ~ 105 Msun):

Kawamura+2009

Class I 

Only YSOs

   No feedback

    Feedback

Zamora-Avilés+2012

GMCs in the LMC

Model
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• Consequences of multi-Jeans, nearly pressureless 
collapse:
– Formation of filaments as gas funnels toward cores (not 

equilibrium structures) (Gómez & VS 14, ApJ, 791, 124).

– SF accelerates! (Zamora-Avilés et al., 2012, ApJ, 751, 77;   
ZA & VS 2014, ApJ, 793, 84)

– Cluster structural properties (VS+17, MNRAS, 467, 1313).
• Age and mass radial gradients (compare to, e.g., Povich+16).
• Fractal structure.
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– Simulations of cloud formation including radiative 
feedback and a realistic IMF (imposed). 

• ART AMR code. 
– Box size: 256 pc
– Colliding flow simulation at 5.9 km s-1 plus 30% turbulent 

fluctuations
– Maximum resolution: 0.06 pc.

• IMF imposed by probabilistic SF scheme.
– A roughly Salpeter-like IMF

• A “PMRT” (“poor man’s radiative transfer”) scheme.
– Simplified radiative transfer method.
– Each “star” radiates according to its own mass.

Numerical simulations (Colín+2013, MNRAS, 
435, 1701; Vázquez-Semadeni+17, MNRAS, 467, 1313)



25



26

“Cluster 2”
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1. SFR increases by collapse, then decreases by feedback.
• Stellar age histograms peak at a certain age (VS+17, MNRAS, 

467, 1313).

Compare to 
observed 
embedded cluster  
age histograms 
(e.g., Palla & 
Stahler 2000).
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2. Correlations and gradients:
• Mass-age.
• Age-velocity.
• Age gradient.

Age

A flyby.
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Average v

Minimum v

Age
A

ge

Lack of young stars 
at large distances.
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3. Self-similar, fractal cluster structure:
• Cluster consists of groups, which consist of subgroups, etc.
• Compare to talk by Simon Portegies Zwart.

Linking parameter = 2

4 groups

Linking parameter = 1

9 groups

Linking parameter = 0.5

13 groups

Applying a friends-of-friends algorithm at t=30 Myr:
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VI.  
CONCLUSIONS



– Gravitational collapse likely to star at the cloud scale.

– Global collapse of star-forming molecular clouds 
implies:
• Filaments form spontaneously.
• SF accelerates due to collapse, 

– then decays due to feedback.

• Collapse is hierarchical (collapses within collapses):
• Clusters are born with:

– Fractal (hierarchiical, self-similar) structure.
– Radial age gradients.
– Age-mass correlations (massive stars form at peak of SFR).
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