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Filamentary Cloud

m  Herschelhas revealed many filaments in thermal dust emissions.
Filaments are regarded as basic building blocks of clouds.

= Near IR polarization extinction observations indicate

o Interstellar magnetic field is | to the filaments with large column-
density.

a low column-density filament is extending // to B.
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Planck Polarization (353GHz)

Planck intermediate results. XXXV (2015). Polarization of Thermal Dust Emission
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B-Field plays a Role in Stability of the Filament?

m Stability is controlled by magnetic flux.
Critical Mass M (I) /27TG1/2

Magnetic Fl = J =t R>B
agne.lc - B dS nR 0 M/(I)ZD > Mcr /(I)ZD
m Clouds with A >Mm~ supercritical —1/272G"
a They have no static equilibrium. B, Magnetic Field

o Dynamical contraction \ \ /‘
= Clouds with M < M_ subcritical \
o Hydrostatic equilibria

o Quasi-static contraction driven
by ambipolar diffusion

= How about filamentary clouds?

Radius




Equilibria of Isothermal filamentary
Clouds

= No Magnetic Field (Stodolkiewicz 1963; Ostriker 1964)
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)
p(r)= p. (1 -+ 8;—[2 ] Scale-height H = C. /(47Z'Gpc)1/2

o Line-mass [g/cm, M., /pc] ‘

2¢ R*/8H? 202
G 1+R2/8H2_ G

A(R) = j 2arp(r)dr =

o Max. Ime-mazss 1> ;Lmax 3 No equilibria
1 2CS =>» dyn. contraction

max A< Z/mm( =» equilibrium solution

- : with a finite density-contrast
critical line-mass of B=0 case Y




‘ Magnetized Filaments

= Model with constant plasma 3

B along the filament

(,B p/ (B / 81T)) (Stodolkiewicz 1963)
R’ /8H" o c(1+87
1+ R*/8H" (4nGp )"

= Model with a constant mass/flux ratio

( p=p/ BZ is conserved in the radial contraction)
(Fiege & Pudritz 2000a,b)

o Line-mass increases with B-field strength.
= However, observed filaments have LATERAL B-

field. |.

B perp to the filament




Parameters to Specify a Magnetohydrostatic Equilibrium

“ Pare nt” filament EC]UIlIbrlum in balance b/w gravity,Lorentz

defines a way of mass-loading force, and thermal pressure
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We consider a gas cylinder | I ‘ |
with a uniform density, SR

. Y Thin and wide noodle
a radius R,, and sound speed c,

: 2
is immersed in a uniform B-field B, density at the surface p =p . /c;
and external pressure p,,,. central density p.

After normalization, the problem contains 3 parameters:

Density contrast Ambient plasma [3 Radius of “Parent” filament

p./p, B,=p. /(B /8r) R /[c./(4nGp )"]



Result 1 Small R,=0.5 of Parent Cloud
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(1) Line-mass A, increases with central density p..
(2) The filament with low p_extends along B-field.
(3) That with high p_ has a major axis perp to B-field.



Result(2) Standard Model

Hour-glass type B-field.

(1) Line-mass A increases with central density p..
(2) The major axis is perpendicular to B-field.

(3) Regions of weak B-field are found near the equator.



Central Density p, vs Line-Mass A, Relation

Models with not | % Models with standard R,
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Critical Line-Mass of the Filament

Empirical critical mass formula

nomarized
250 B ] . 1/2
2,20 | A, =0240,,/G
I 1 imensiona
200 - - 5
T . | +1.66c /G
ngO f i
o f When the magnetic flux exceeds
= . X ]
100 * @, =R B >3uGpc
= I % Least Squares Method ] . . . .
A Ao X4 3@ +2‘o 8<Q . maximum line-mass is determined
L0722 by the magnetic flux per length.

20 40 60

normalized o = R B, Take notice of the similarity to the
Mag. flux per unit length mass formula for a thin disk

M _=® /21G"
=0.160, /G"™



Polarization of Thermal Dust Emissions from
oblate/prolate dusts aligned in the B-field direction.
Q — .C' R-F-c- BV(T):O 00521// COSz }/dS (Draine & Lee 85,
[ — i. C.R-F.c. BV(T)p Sin 21// C082 de Fiege & Pudritz 2000)

C: difference of cross sections perp and parallel to B
R: reduction factor due to imperfect grain alignment
F: reduction factor due to turbulent B-field

C=p/nd ce}llestial
sphere
Y : angle b/w B and plane of the sky. \
V¥ : angle b/w projection of B and 7}-axis simulation | en

Relative Stokes parameter (Wardle & Konigl 90)

g= | pcos2y cos’ yds

u= | psin2y cos’ yds o
I = jpds \

Uniform distributions of T and dust Polarization angle and polarization
alignment degree degree




‘ Distribution Function of Angle b/w B and
Filament axis --- statistical analysis
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If all the filaments are observed
as perpendicular pol. configuration,
filaments may have a high density contrast.

Even when B perp filament in 3D, for some
cases, filaments seem to have pol vectors
parallel to them.




‘ Dynam |Ca| Stabl I I-ty Linear perturbation problem is hard to be

solved, since the Eigenfunction is 2D.
Numerical simulation using AMR code SFUMATO with T. Matsumoto

(A) Random density perturbation is added to each grid point

Op/p obeys Gauss distribution

op/p=0 SD=0.1,0.01 made by normal random number

(B) Sinusoidal density perturbation is added

P =Py (X5 )| 1+ Acos(2mz / L) |
A=0.1, 0.01 Y

periodib boundary
for the z-direction




B, =

R =2 L =L =8

p,. =10 L =24
random densi rturbation
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‘ Dynamical Stability
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A Pseudo-disk in Runaway Collapse

p and B p and B
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=» Formation of a Contracting Pseudo-disk
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‘ Dispersion Relation of Gravitational Instability
Isothermal cylinder with uniform B-field

Simplification = Uniform B-field + P__ =0
Eigen-function is 2D

Condition for stability
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Conclusion

Stability of Filament Threaded by Perpendicular B-Field
for A, <4, (@, .c)

Gravitational Instability

(1) A<A, stable oscillation

(2) A> A, gravitational instability

(3) filament fragments into A =24,

Instability may be suppressed for small S,

172 —1/2

Typical scales: Separation ~ (0.1-1)T,""n 5 pc
Mass ~ (1-10)T"n,3*M

n ,=n,/10°cm™
T,=T /10K



