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Background

Angular momentum transport is the key of star/disk
formation and evolution.

* Magnetic braking and magnetically-driven outflows
e Gravitational torque by non-axisymmetric structures
* (turbulence, viscosity and other instabilities)

Grand design spiral arms are found around a young Class-l|

object Elias 2-27 (Pérez+ 2016), but the origin is unclear:

* Gravitational instability T T
but spiral arms should dis-
appear in a few orbits due to
the differential rotation (?) | -

* Planet-disk interaction
a planet may exist in the “gap”,

Kuiper Belt orbit
The Ophiuchus star-forming regio O Pérez et al_ 2016

Image Credit: NASA/JPL-Caltech/WISE Team

but it should produce non- T e
axisymmetric arms (?)

* Density waves
favored by elimination (?)

We perform a long-term MHD simulation until the end of
the Class-I phase and compare our model with Elias 2-27.

MHD Simulation
Simulation Method: Initial condition:
* 3D Nested-grid * unstable Bonnor-Ebert sphere
* MHD + Ohmic dissipation * T=10K, p.=2.2x10%g/cc, 1.25Ms
* Self-gravity * B=36uG, mass-to-flux ratio pu=3
* A sink particle * aligned rotation Q=1.5 x 10%3/s

* Barotropic approximation
e Resolution: best ~ 0.75AU, typically 3-6 AU @ R~100-200 AU
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 We run the simulation till the
end of Class-I - almost all the
gas was accreted or ejected. f o1 |

» The disk mass is ¥~30% of the |/ #* st ss
mass of the central protostar i el s

* Magnetic braking becomes less |
efficient as the disk grows and
as the envelope disperses.

* The disk gets gravitationally
unstable and the spiral arms
form, then the disk stabilizes
and circularizes.

—> This occurs recurrently and its h

timescale is a few orbits. M

* The disk oscillates as it grows - | @

the radius correlates with Q.
* The disk radius reaches 200AU
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Synthetic Observation

In order to compare our model directly with the

observation, we calculate the dust continuum at 1.3mm.

1. Calculate evolution of the star (the STELLAR code, Yorke
& Bodenheimer 2008, Hosokawa et al. 2013)

2.Recalculate the temperature assuming that the
temperature is in equilibrium under the stellar irradiation
using RADMC-3D (Dullemond 2012) and the opacities of
Semenov et al. (2003)

3. Calculate the intensity distribution with RADMC-3D

4.Simulate ALMA observation using CASA

Obtained stellar properties at the end of the simulation:
Mass: 0.444M 5, Radius: 2.935 R, Luminosity: 1.604 L

The time-averaged accretion ratein _ “[
the simulation is high: ~10°M/yr.
Considering the luminosity problem
and episodic accretion, we use the
observed accretion rate 8x 108 B I ———
M /yr (Najita et al. 2015). R
—> Accretion luminosity: 0.379 L, |

Total luminosity: 1.98 L,

Effective temperature: 4,000 K, :

Spectral type: ~ MO

(good agreement with Elias 2-27)
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The protostar age: ~ 5 x 10% yrs A
Elias 2-27: ~ 10 yrs (isochrone) s

Parameters of the ALMA simulation (based on Pérez+ 2016):
Position: RA = 16h26m45.024s, Dec = -24d23m08.250s

Distance and Inclination: 139pc, 55.8°

Array configuration: alma.cycle4.5.cfg

Integration time: 12.5 minutes on the source

Wavelength and Bandwidth: 1.3mm, 6.8GHz

CLEAN: the Briggs waiting, robustness = 0.5

— Beam size : 0.29 arcsec x 0.26 arcsec (~ 40 AU x 36 AU)
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Left: synthetic observation (Tomida et al. 2017)

Right: actual ALMA observation (Pérez et al. 2016)
They are in good agreement (I mean, “astrophysically”)
— the gravitational instability model works well!

Conclusions and Discussions

* Young circumstellar disks become massive, and spiral arms
form recurrently by the gravitational instability

* Our model successfully reproduces most of Elias 2-27

—> Gravitational instability scenario can explain spiral arms

* Slow molecular outflows (1~2 km/s, Gurney+ 2008) and
the age (observation: ~10° yrs vs model: ~5 x 10% yrs) are
also consistent with the observation

* |f such spiral arms are common in young circumstellar
disks, it means that young circumstellar disks are massive.

— This is consistent with the observed high binary rate.

—> Also important as the environment of planet formation



