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13 Jets and Molecular Outflows

We now begin a series of chapters describing how newly created stars disturb their surrounding
gas. The influence here is both mechanical and thermal. Cloud material is stirred into turbulent
motion, expelled from the vicinity of a star, or heated to high temperatures. For regions that are
either very dense or at a considerable distance, such activity may be the best, and indeed the
only, means for revealing the presence of the stars themselves. The physical processes we will
study are also of considerable interest in their own right.

One of the surprising discoveries in this field has been the disproportionate effect of low-
mass objects. In the present chapter, we shall see how each such star generates, during its
embedded phase. an energetic outflow extending well beyond its parent dense core. The star also
emits a jet of much higher-speed gas that can travel even farther, entering regions nearly devoid

of cloud material. These striking phenomena were wholly unanticipated by theorists, who are
still struggling to understand the basic mechanisms of wind generation and jet propagation. We

shall introduce the key concepts in both of these developing areas.

Jets are rendered visible by the shocks they produce. If the shocked gas has sufficiently
high density, it may also generate beams of radiation that are intensified through the quantum
phenomenon of stimulated emission. Such interstellar masers have been extensively studied,
both for their intrinsic properties and for what they reveal about the dynamics of the regions
producing them. Chapter 14 is accordingly devoted to this topic. Finally, we turn in Chapter 15
to the highly destructive effects of massive stars. Ionizing photons create HII regions that, along
with stellar winds, disrupt entire cloud complexes. The fluorescent gas also serves as a beacon




Outline

Intro: jets and outflows

ALMA observations of IRAS 04166+2706 jet

(Tafalla, Su, Shang, Johnstone, Zhang, Santiago-Garcia,
Lee, Hirano, Wang 2017, A&A, 597, A119)

ALMA observations of the L1448 jet and outflow
(Tafalla et al. 2017, in preparation)



Signatures of star formation
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Jets and outflows

Lee et al. (2007)

« Part of the same phenomenon of mass ejection

- Cause and effect? Different ejection components?
 Two families of models

- Jet-driven

- Wide-angle wind



Jet-driven models

Wandering Shocks
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Precessing jet
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outflow Masson & Chernin (1993)
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e Main problem: jets are narrow and
outflows are broad/shell-like

- Broadening mechanism is needed
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* Raga et al. (1993)




Wide-angle wind models
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Shang et al. (2006)
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Shu et al. (1991)

» Protostellar wind is angle-dependent
* Problem: how to produce jets

- Jets are denser central part of wind
- “optical illusion”



Outflows with molecular jets
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EHV gas Is a distinct component
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 EHV not only peculiar in kinematics, but chemistry
« HCNY/SIO ratio drops factor 20 between wing and EHV

— Other carbon-bearing species behave similarly



IRAS 04166: peculiar velocity pattern

O
T T \o
ég(} _ » 60 : CO (2-1) north/blue <t
b p 2 IRAS 04186+2708 | | -
D ® 50 |- 2
J . ; i
og® : CO(J=2-1) EHV P
. | ma0= o
. 7 [ ! '
5 : -
=] Fo|
= - | —
3 L o
= || o
s 4 o
= o
= ~—
a -
S B =
i e
5 = Q
<) i (3]
a B i
34 ~ z
b ]
: K
| 2
[ G
\ =
471945 g
a(J2000) (7]
/ bow shock ‘—..-]_.__.- ) V

secondary cocoon

jet boundary /

primary cocoon

Raga et al. (1990)




ALMA observations of IRAS 04166

Tafalla, Su, Shang, Johnstone, Zhang, Santiago-Garcia, Lee, Hirano, & Wang
(2017, A&A, 597, A119)
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ALMA observations of IRAS 04166
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Cycle 1 ALMA observations: two
fields

~ CO(2-1), SIO(5-4), SO(6.-5,)
- FWHM beam ~1".5 x 1.1

EHV emission mostly/fully recovered
(slow outflow emission is lost)



Integrated intensity maps

Northern field Southern field IRAS 04166+2706
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Velocity structure of the EHV gas

p UNorthern field 1 Southern field
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« Systematic displacement as function of velocity

over 20 km/s
- also seen in B5 component

« Emission covers an elliptical region as it moves
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Curvature: bow shock geometry

CO(2-1) first moment maps
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A simple geometrical model

Expanding parabolic shell

- isothermal (20 K)

- gas moves parallel to shell

- same shell for both fields (opposite

orientation)
- no turbulent velocity component (too

narrow maps)
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Velocity and density fields

_Northern field _Southern field » Velocity needs to increase linearly

away from jet axis
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Implications: gas lateral momentum

« EHV gas motion has two components

- parallel to jet axis (~60 km/s)
- perpendicular (linear increase to 13 km/s)

Forward momentum dominates
- factor of ~7

- consistent with high collimation e i
- 80 0 V;lzz)gity (kr:/s) 2 0
Sideways momentum in each EHV ejection 200 |
- from model parameters: ~ 7 10 Mo kml/s
. 2 A
Total sideways momentum depends on g - -
number of EHV ejections g 90 o |
: 3
New IRAM 30m observations show jet much v

larger than initially mapped
If 20 EHV ejections over lifetime
- Lateral momentum = 1.4 102 Mo km/s per
lobe

Momentum needed to open shell
- M_xc =510° Mo kml/s per shell

EHV gas could have opened outflow cavity
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L1448 ALMA
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e Cycle 3 ALMA observations
- CO(2-1), SiIO(5-4). Beam ~ 0".3
« Data released to PI November 2016
- Modeling in progress

— Preliminary results!
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Main kinematical features

« Spatial continuity between jet and outflow regimes
« Systematic broadening of outflow shell

* Discrete bright shells



shear flow
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Summary

In IRAS 04166, we find kinematic evidence for lateral ejection

of gas in jet shocks

- injection of lateral momentum could potentially the rest of
the molecular outflow

In L1448, we find a continuous velocity pattern that connects
the jet and the molecular outflow

- Outflow resembles a jet-driven shear flow

- Flow shows evidence for discrete acceleration events

New ALMA data favors a molecular outflow acceleration
mechanism based on the lateral ejection of gas from the jet
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