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Abstract: Recent studies show that a protoplanetary disk lifetime 1s shorter in the low metallicity Il Results: Solar Metal llC‘llj/ Disk

environments than the solar neighborhood. Photoevaporation is suggested as an important
mechanism to explain it. We perform radiation hydrodynamics simulations of photoevaporation Dense Neutral Flow & H g olecular ﬂ ot

of a protoplanetary disk. We simultaneously solve hydrodynamics, self-consistent EUV/FUV
radiative transfer, and non-equilibrium chemistry. Grain temperatures are also calculated by
solving the radiative transfer of the stellar 1rradiation and grain (re-)emission. For our fiducial
configuration, the resulting photoevaporation rate is 1.38 x 107® M, yr! for solar metallicity. It
becomes low as metallicity increases in the range of 107%° Z; < Z < 10 Z, and sharply declines
towards lower metallicity in the range of 107! Z; < Z < 1070> Z;,. It is almost constant in the
lowermost range 107 Z; < Z < 107! Z;,. We develop a semi-analytic model. It can well explains |
the metallicity dependence of the photoevaporation rates and the radial distribution of them. Our | 1
results are consistent with the observed lifetimes. :
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Neutral flow density increases with decreasing metallicity.
* With very low metallicity, the neutral flow is not even excited.

. _ 1n+0.5 ..
40 0 2=10""20 Lower metallicity
| 4 |
An approximate criterion for evaporation. (thermal energy) = (gravitational energy) 4 Smaller amount of dust
N
| .]]..Numerzcal Szmz:tlatz.an & Meth?a.’s | | 5 4 [ ess attenuation of FUV
Consistent radiation-hydrodynamics with non-equilibrium chemistry | | |
— Simulation setup ‘ FUYV can heat denser region
Lo initial Structure . ¢
» 2D spherical polar coord. Higher neutral flow density (o< Z 1)
» Symmetry
r e
~EUV & FUV + Axis (0= 0)
i | * mid-plane (0 =x/2)
Disk > Computational domain
11 + » =[1,100]AU
20 [au] 4 e 0 =[0,n/2]rad
Stellar parameters (a low- ||» The amounts of dust/metals are
mass PMS star) proportional to metallicity
e.g., Omukai 2000 .
Pruyy = 6 x 10* g1 * Species o " In (neutral) base regions (ny; o< Z ),
H, H", Hy, C*, O, CO, e . ,
Lruyyv = 4 x 103! erg g1 Dust-gas cooling < n4  ny ¢ Z
* Dust-to-gas-mass ratio : 1
R.,=2 Ry M, =0.5 Mg 0.01 Z/Z FUV heating o< n, o Z x Z 71 =1
(e.g., Clarke+01; Alexander+04; Gorti+09; Owen+12) . . l .
e Elemental abundances Cooling 1s ettective with lower Z
Chemical Reactions _4 l .
yc = 0.927 x 107* Z/Z4 Steady disk, ..\
 Photoionization, yo = 3.568 x 10™* Z/Z femperature blecomes lower T
» H, photodissociation e Metallicity Neutral flow 1s not excited

107* Zo < Z <10 Zg

» Hydrostatic equilibrium disk as
the initial structure
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* Radiation transfer (hybrid-scheme) for direct & diffusion component




