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ABSTRACT

The hypothesis that Herbig Ae/Be stars are young stars of intermediate mass (1.5 < M,/M < 10) sur-
rounded by circumstellar accretion disks is examined. Analysis of the spectral energy distributions for 47 cata-
loged Herbig Ae/Be stars leads to their classification into three §roups Group I includes 30 stars with large
infrared (IR) excesses characterized by spectral slopes AF, ~ A~*/, Infrared spectral energy distributions (l =
2.2 pm) for these objects can be well fitted by assuming that excess emission above photospheric levels arises
in a geometrically flat, optically thick circumstellar accretion disk. The inner regions of these accretion disks
(from the stellar surface to a distance of several stellar radii) must be optically thin in order to account for
distinctive inflections in their observed near-infrared (1.2 um < A <22 um) spectral energy distributions.
Group II includes 11 objects with flat or rising infrared spectra. These objects appear best interpreted as
young, intermediate-mass stars or star/disk systems surrounded by gas and dust which is not confined to a
disk. Indirect arguments suggest that most of these systems may be viewed through remnant infalling
envelopes and, if so, might be regarded as the evolutionary precursors of the group I objects. Group III con-
sists of six stars with small infrared excesses, whose infrared spectral energy distributions appear similar to
those of classical Be stars in which modest excesses above photospheric levels seem to arise from free-free
emission in a gaseous circumstellar disk or envelope. Nevertheless, their association with star-forming molecu-
lar clouds and their proximity to other young stars suggests that they are young, intermediate-mass stars
which lack disks and which may be analogs of diskless T Tauri stars.

Basic disk parameters for the group I objects are derived from extant optical and infrared photometry and
from newly measured millimeter continuum flux densities: masses for the disks (along with any remnant
envelope material contained within the millimeter-antenna beam) are in the range 0.01 < M y,,/M < 6; lower
limits to outer disk radii are in the range 15 < Ryisx/AU < 175; inner optically thin disk regions have radii
3 < Ry /R, < 25; disk accretion lummosmes are in the range 12 < L /Ly < 1800, while the deduced disk
mass accretion rates are in the range 6 x 1077 < M, < 8 x 107 M, yr~'. Derived Balmer line luminosities
for the group 1 objccts correlatc wcll with our accretion luminosities and extend the relationships between
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ABSTRACT

High spatial resolution data at 50 and 100 um are presented for seven young, intermediate-mass stars with
flat or rising spectral energy distributions. Five objects have been resolved in at least one direction at 100 um,
and two were resolved at 50 um. The far-infrared emission from resolved sources comes from extended
envelopes whose size varies between 5 x 10° and 8 x 10* AU. In most cases, the intensity profiles do not
show large departures from spherical symmetry.

For the five resolved stars, we model the observations as emission from dust in an envelope, heated by a
central source. The combination of the size information and the spectral energy distributions demonstrates
that the central source spectra must be considerably redder than those of the stars. While several possible
explanations exist, we adopt a model for the central source composed of a star and a circumstellar disk. By
comparing the predictions of radiation transfer models to the observations (the far-infrared scans and the
spectral energy distribution from visual to millimeter wavelengths), it is possible to separate the contribution
of the star, the disk, and the envelope, and to investigate their physical properties.

The derived density profiles of the envelopes show that in two cases the dust has a steep density profile
(n~r~% a~2), while in three other objects the dust must be distributed with rather shallow gradients
(x ~ 0.5). Thus, our sample of five Herbig Ae/Be stars, all surrounded by a significant amount of matter,
includes objects that ar= nrahahlv etill in an accratinn nhaca and nhiacte that ara nat [t js at present unclear
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F1G. 13—H-R diagram with luminosities and temperatures calculated as in
§ 3. Mass tracks are those of Ezer & Cameron (1965, 1967a, b), and age
isochrones are derived from the tracks using polynomial interpolation. The
zero-age main sequence is from VandenBerg & Bridges (1984). Group III
objects (open circles) comprise only relatively massive stars (M, > 5 M);
Iowcr' mass stars (M, <3 M) predominate among group II objects
(asterisks); while group I objects ( filled circles) overlap groups II and III and
span a wide range of ages and masses.
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ABSTRACT

We combine the protostar mass-radius relation with standard pre-main-sequence evolutionary tracks to
construct the birthline for stars of intermediate mass (2 < M,/M¢o < 10). Our theoretical birthline is in good
agreement with the observed upper envelope of the distribution of Herbig Ae and Be stars in the H-R
diagram. From the intersection of the birthline with the ZAMS, we predict that stars with M, 2 10 Mg
should never exhibit an optical pre-main-sequence phase; this prediction also agrees with existing observa-
tions. These findings show that stars of intermediate mass are first optically visible quite close to the main
sequence. Hence, their contraction ages are less than the traditional ones derived assuming large initial radii.
Our birthline is also well delineated by the locus in the diagram of optically visible stars with associated
molecular outflows. The underlying protostar theory predicts that newly formed stars of intermediate mass
burn deuterium in a subsurface shell. We propose that an outer convection zone maintained by this shell
burning is the cause of the winds and surface activity commonly observed in these stars.

E T T T T T T T T T T
+5 12— T T T T T T T
+4

+3+

Ry (Ro)

2k

l0g,q (Ly/Lo)

Radius

+|

4 . 1 L 1 N 1 L 1
46 44 42 40

10G 10 Tett

Fi6. 3—Location of the stellar birthline. The birthline is the heavy curve
cutting across the lighter pre-main-sequence tracks of Iben (1965). Each track
is labeled by the corresponding mass in solar units. The squares are observed
Herbig Ae and Be stars from Finkenzeller and Mundt (1984), and the filled
symbols (circles and squares) are the outflow sources from Levreault (1988).
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FiG. 2—Evolution of the radius in an accreting protostar (from Palla and
Stahler 1991). Shown is the radius vs. mass, in solar units, for a spherical
protostar accreting at a rate of 10~° M, yr™ . The open circles represent, from
left to right, the ignition of central deuterium, the start of deuterium shell
burning, and the ignition of central hydrogen via the CN cycle.
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ISOLATED STAR-FORMING REGIONS CONTAINING HERBIG AE/BE STARS. I. THE YOUNG
STELLAR AGGREGATE ASSOCIATED WITH BD +40° 4124
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ABSTRACT

We use optical and infrared photometry in combination with red optical spectra to study the star-forming
region associated with the two Herbig Ae/Be stars BD +40° 4124 and V1686 Cyg. We identify a partially
embedded, dense, isolated cluster of pre-main sequence stars concentrated within (.15 pc of the two young
high-mass stars. The cluster is isolated in that it is separated by approximately (.7 pc from a surrounding
Har-bright rim and lies at the center of 2 molecular core with peak column density corresponding to 45 mag
of visual extinction. The fraction of the stellar population with evidence for circumstellar activity is 100%
amongst the optically visible cluster members and at least 50% amongst the embedded sources. This small
region is characterized by an apparent age spread of approximately 3 Myr with evidence for both high- and
low-mass stars forming relatively simultaneously (within several hundred thousand years). Comparison of
the derived stellar mass distribution to that expected from Monte-Carlo sampling of the sotar neighborhood
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Abstract. We present large field infrared images of a sam-

ple of 45 Herbig Ae/Be stars. Stellar parameters, such as

age and luminosity, have been derived for all of them in a

consistent way. The images have been used to identify stel-

lar groups or clusters associated with the Herbig Ae/Be —
star. The results presented in this paper form the database @‘
for a study of clustering around intermediate mass stars -
(Testi et al. 1998).
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Observed Cluster Properties

Denser clusters are associated with higher mass stars.
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Beyond Star Counts:
The Stellar/Sub-Stellar Mass Function

* Younger stars much
brighter than similar-mass
but older counterparts
e.g. in open clusters.

* Herbig Ae/Be regions do
not seem biased to high
mass star formation
overall; plenty of M-type
stars too.
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The ONC Initial
Mass Function
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The ONC Initial
Mass Function

Quadratic or log-normal
functions fit best.

MS(1979) power-law
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STAR FORMATION IN THE ORION NEBULA CLUSTER

FRANCESCO PALLA! AND STEVEN W. STAHLER?
Received 1999 March 3; accepted 1999 June 23

ABSTRACT

We study the record of star formation activity within the dense cluster associated with the Orion
Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theo-
retical model for cluster formation. This model assumes that stars are produced at a constant rate and
distributed according to the field-star initial mass function. Our best-fit age for the system, within this
framework, is 2 x 10° yr. To undertake a more detailed analysis, we present a new set of theoretical
pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 M, and start from a realistic stellar
birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empiri-
cal one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre—
main-sequence luminosities and ages to account for the effects of unresolved binary companions. The
Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram.
All those more massive than about 8 M lie close to the main sequence, as also predicted by theory.
After accounting for the finite sensitivity of the underlying observations, we confirm that the population
between 0.4 and 6.0 My roughly follows a standard initial mass function. We see no evidence for a
turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 M.
Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually
accelerated to the present epoch. The period of most active formation is indeed confined to a
few x 106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceler-
ation in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of
the parent cloud spawning this cluster.
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The Stellar and Sub-Stellar
Initial Mass Function
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Stellar masses (and ages)
derived via comparison to
evolutionary theory.

Rapidly evolving mass-
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really match isochrones

though, making evolutionary
trends difficult to trust.
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Inner Disk
Dissipation:
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Dust Disk Dispersal Post-Spitzer
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Some evidence for
“inside-out” clearing of
circumstellar dust.
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Mean Luminosity vs Effective Temperature

] Observed scatter in

] log L/L, diminishes

from ~0.5 dex at 1 Myr
to ~0.15 dex at >10 Myr,
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How to Test Reality of Luminosity Spreads

Find a different clock than isochrones
— Correlation with surface gravity

— Correlation with lithium
— Seismology checks in certain mass regimes

Review systematics
— Intrinsic colors and temperature / bolometric correction scales
— Av errors

Review effects that can lead to scatter
— Error / binary effects

— Scattered light effects

— Accretion effects

— Variability!

Confirm membership — Gaia!
Obtain exquisite photometry and high quality spectra..........



| Robberto et al. 2006

FP became a
collaborator!




In Principle, Better HR Diagram BUT About
the Same Stellar Mass and Age Distributions

Da Rio et al. 2011

: Da Rio !
: 1000 E goratfe ot ol (1298)
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The IMF in the Orion Nebula Cluster
turns over just before the hydrogen
burning limit, declining for brown
dwarfs.

The luminosity dispersion, of 0.3 dex,
persists as an empirical effect; it may or
may not correspond to real age spread .




A MULTI-COLOR OPTICAL SURVEY OF THE ORION NEBULA CLUSTER. II. THE H-R DIAGRAM 2010

N. DA Rio''%, M. RoBBERTO?, D. R. SoDERBLOM?, N. PANAGIAZ ¢ L. A. HILLENBRAND3 F. PALLA®, AND K. G. STASSUN?
! Max Planck Institut fiir Astronomie, Kénigstuhl 17, D-69117 “mpg.de
2 Space Telescope Science Institute, 3700 San Martin Drive, Balnmone MD 21218, USA
3 California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
* INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi, 5 I-50125 Firenze, Italy
5 Department of Physics & Astronomy, Vanderbilt University, 6301 Stevenson Center Lane, Nashville, TN 37235, USA
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ABSTRACT

We present a new analysis of the stellar population of the Orion Nebula Cluster (ONC) based on multi-band optical
photometry and spectroscopy. We study the color—color dlagrams in BVI, plus a narrowband filter centered at 6200 A,

finding evidence that intrinsic color scales valid for main-sequence dwarfs are incompatible with the ONC in the M
spectral-type range, while a better agreement is found employing intrinsic colors derived from synthetic photometry,
constraining the surface gravity value as predicted by a pre-main-sequence isochrone. We refine these model colors
even further, empirically, by comparison with a selected sample of ONC stars with no accretion and no extinction. We
consider the stars with known spectral types from the literature, and extend this sample with the addition of 65 newly
classified stars from slit spectroscopy and 182 M-type from narrowband photometry; in this way, we isolate a sample
of about 1000 stars with known spectral type. We introduce a new method to self-consistently derive the stellar
reddening and the optical excess due to accretion from the location of each star in the BVI color—color diagram. This
enables us to accurately determine the extinction of the ONC members, together with an estimate of their accretion
luminosities. We adopt a lower distance for the Orion Nebula than previously assumed, based on recent parallax
measurements. With a careful choice of also the spectral-type—temperature transformation, we produce the new
Hertzsprung—Russell diagram of the ONC population, more populated than previous works. With respect to previous
works, we ﬁnd hlgher luxmnosny for late-type stars and a shghtly lower lummosny for early types. We determine the
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Careful Attention to Stellar Parameters
Reduces Luminosity Spreads
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Simultaneously fit moderate dispersion spectra for
spectral type, veiling/accretion, and extinction.

Much more reliable stellar parameters than those
from broadband colors, which are affected by both
scattered light and extinction.

logiL,/L.)

Manara et al. 2013
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Frasca et al. 2017
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Fig. 6. Hertzsprung-Russell diagram of the Lupus mem-
bers. The evolutionary tracks of Baraffe et al. (2013) are




Careful Membership Selection
Reduces Luminosity Spreads
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Figure 8. Dispersion in log L/Ls with log Tess. Pre-Gaia values are in the top panel, and post-Gaia values in the bottom.
Although there is a reduction in the luminosity spreads when individual parallaxes are used, the luminosity spreads do not
reach the maximum spread expected from propagation of various error sources (gold hatched region). The yellow hatched region
extends to the maximum effect from equal-mass binaries.



Consideration of Variability Effects
Reduces Luminosity Spreads

[Messina et al. 2017]

clean periodic non—periodic sample




Lightcurve Gallery at 5-10 Myr

Burster / Episodic accretion events
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Do Gravity Indicators
Correlate with
Luminosity Spreads?

IAU Symposium 258. Young Star Ages 6000 2000 4000 3000
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Figure 2. Based on data presented in Slesnick et al. (2008) for M4-M7 stars in the Upper Sco
region. The left, middle, and right panels correlate log L /L (stellar bolometric luminosity), Alog
L/Le (deviation from mean luminosity normalized to effective temperature), and log GM/R

(surface gravity) computed from the pre-main sequence log L/Le and log Tess location in the
HR diagram — all with the surface gravity sensitive Na I 8190 A spectroscopic index defined
by Slesnick et al. Correlation coefficients and the linear least squares fits are poor for the left
and middle panels, but -0.6 (inversely correlated) in the right panel with 0.27 dex rms for the

displayed fit of [log g = (—12.9 £ 0.7) x Nal + (15.5 £ 0.6)]. [Hillenbrand 2009]



Meanwhile, FP was
Pursuing Lithium Depletion

Young solar analogs
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Lithium Depletion in the ONC ?

Could be non-members, i.e foreground stars placed at the incorrect distance.
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Fig. 1.— The distcibutica of the sample stars in the H-R dingram. The hatched regions
indieate different levels of predicted Li depletion: up to a factar of ten (light grey) and mare
(dark grey) below the mitial walue according to the models of Siess et al. (2000). Selected
masses and isochrones are indicated. Open and Alled cirdes are foc theceetically expected

undepleted and depleted stars, respectively.

[Palla et al. 2005]
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** FP’s slide LAH was asked
to present in 2008

6 stars - 4 stars:
M & age are fully
consistent (5%!):

4 8 12 16 2

7 |

2 stars: inconsistency
Thro<TLi

Orion Cluster
did not form in a
single, rapid
burst...
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TauTuS—Auriga: Older stars from ** FP’s slide LAH was asked
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Li-depleted stars

New analysis:
updated stellar values
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Temperature log (T_.) (K)

Sestito, Palla & Randich 2008 A&A

Result:
most stars have n(Li)=initial
consistent with HRD position

~10 Li-depleted stars
approx. in the correct Li-depletion
region

Also, case for St 34 from
White & Hillenbrand 04




** FP’s slide LAH was asked to present in 2008 **
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Pulsation in young brown dwarfs?

Spectral Type
A MS M6 . M7 , MA8 7 , M9

Teff

= Deuterium-burning objects
predicted by Palla & Baraffe
(2005) to pulsate at P=1-4 hr.

= Narrow instability strip
offers strong age constraints
-- if pulsators can be found.

= A.-M. Cody Ph.D. thesis
based on testing P-B theory.

* Many young brown dwarfs
located near the predicted
instability strip.

= Campaign to monitor ~350
of them at high precision.



Pulsation in young brown dwarfs?

2014
A PULSATION SEARCH AMONG YOUNG BROWN DWARFS AND VERY-LOW-MASS STARS

ANN MARIE CoDY''? AND LYNNE A. HILLENBRAND'
! California Institute of Technology, Department of Astrophysics, MC 249-17, Pasadena, CA 91125, USA; amc@ipac.caltech.edu
2 Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
Received 2014 September 10; accepted 2014 October 17; published 2014 November 14

ABSTRACT

In 2005, Palla & Baraffe proposed that brown dwarfs (BDs) and very-low-mass stars (VLMSs; < 0.1 solar masses)
may be unstable to radial oscillations during the pre-main-sequence deuterium burning phase. With associated
periods of one to four hours, this potentially new class of pulsation offers unprecedented opportunities to probe
the interiors and evolution of low-mass objects in the 1-15 million year age range. Following up on reports of
short-period variability in young clusters, we designed a high-cadence photometric monitoring campaign to search
for deuterium-burning pulsation among a sample of 348 BDs and VLMSs in the four young clusters o Orionis,
Chamaeleon I, IC 348, and Upper Scorpius. In the resulting light curves we achieved sensitivity to periodic signals
of amplitude several millimagnitudes, on timescales from 15 minutes to two weeks. Despite the exquisite data
quality, we failed to detect any periodicities below seven hours. We conclude that D-burning pulsations are not able
to grow to observable amplitudes in the early pre-main sequence. In spite of the nondetection, we did uncover a rich
set of variability behavior—both periodic and aperiodic—on day to week timescales. We present new compilations
of variable sources from our sample, as well as three new candidate cluster members in Chamaeleon 1.

Could still be there, but either: lower amplitude than a few mmag, or unexpectedly damped by convection.



Difterent Theoretical Models / Tracks
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Isochrones and Stellar Multiplicity

* Using standard HR IR
diagram methods, TR
binaries and higher order "gj‘o‘“&g;:
multiples are more E°F T
coeval than random pairs EEZ TR

* Previous work:
— Hartigan, Strom, Strom (1993)

4000 3500 3000

— White et al. (1999) T, (K)

Kraus & Hillenbrand 2007



® eclipsing binaries
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orbital phase

slide courtesy of T. David



Kepler/K2 to the Rescue

~100 deg? FOV!
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Low-mass eclipsing binaries are rare

Stellar radius (R )
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Pleiades DLEBs:

From One to Four

10

MHO 9 A

A
HIl 2407 B

10- _l

—
-
-

HD 23642 A

HD 23642 B

HII 2407 A

10

M/M
[David et al. 2015, 2016]



Praesepe DLEBs: From None to 3-1/2
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Figure 6. Mass-radius relation for detached double-lined eclipsing binaries (EBs) below 1.5 M. Data compiled from Table
4 and DEBCat (http://www.astro.keele.ac.uk/~jkt/debdata/debs.html). EBs that are members of open clusters are coloured
while field EBs are shown in grey. The clusters containing known EBs are Orion (blue), Upper Scorpius (black), NGC2264
(cyan), Pleiades (magenta), Hyades (orange) and the new Praesepe EBs (green) presented here. The coloured lines represent
solar metallicity isochrones of Baraffe et al. (2015) from 1 Myr to 1 Gyr (top to bottom). Inset (top left) is a zoom on the
region containing ADs 3814 and 2615 to allow a closer comparison between the models and current observational constraints

for low-mass stars.
[Gillen et al. 2017]



Characteristics of Youth

Active and variable / moody
(Believe that) everything orbits them
Still gaining mass

Can oscillate between steady low state and
more punctuated episodes of rapid accretion.

Prone to instabilities, outbursts and outflows
Sometimes long term depressive states
Obscured (or at least obscure)

Hard to figure out!
LHillenbrand inspired by GHerczeg
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Ha Call inner disk truncated ~ &/aco-ot=0.91 accretion stream
near co-rotation radius

Call
HA3

magnetospheric

warp? Konigl 1991 -
P Collier Cameron & Campbell 1993 CaVIty
Romanova & Lovelace 2006
Papaloizou 2007

Meng et al. 2016
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Figure 7. Accretion spectrum simulated with CLouDY. The solid line is the total

emission, which is the superposition of an optically thick emission, with Teg =
Barensten et al. 2013 7000 K, of the heated photosphere (dashed line) and the optically thin emission

of jonized gas with density n = 10® cm™3 (dotted line).

Da Rio et al. 2010



How Does Gas get to the Star?

Kurosawa,
Romanova

both
accretion
and ejection
of material

-1 wind

wind

300 400 Time 500 600 300 400 Tjme 500 600 300 400 Time 500 600




Flux/Med an flux Flux/Median flux

Flux/Median flux

A Continuum of Accretion Burst Behavior
[Cody et al. 2017]
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Small and Moderate-Amplitude Bursters in
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. . lLarge, Short-lived Burst
f Increase in disk accretion
— | 1 rate caused ~3 mag
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Extreme Outbursts - How Frequent?

Discovery Year of FUors since 1936
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Figure 72: The number of FUor discoveries has been increasing since the FU Ori outburst

was observed in 1936.

figure credit: B. Reipurth
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Extreme Outbursts - How Frequent?
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Expected Parameter Space Hillenbrand
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Accretion Affects HR Diagram Evolution
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Figure 12. The effect of different start ages and boundary conditions for accretion on stellar evolution along the HRD. Photospheric
boundary conditions are used except for the “P BC” cases, in which 100% pressure-only shock BCs are used. ae = 0.5 cases tend to
systematically increase surface temperature, and the age in which the accretion history is started plays a role in the width and extent of
the AT, ;5 effect. When disk accretion is started earlier during hot accretion, the width of AT, is reduced, but the YSO seems more
luminous for a given radius (resembling a higher mass YSO). For cold accretion, starting accretion provides a smooth transition between
the lower mass and higher mass tracks. The shock pressure conditions provide a large AT, s s effect, so as to systematically decrease surface
temperatures. Interestingly, in the shock pressure BC case with ae = 0.5, the dynamical increase in T, s ; that would be expected from the

photospheric ae = 0.5 case is suppressed.
Cao & Hillenbrand,
2018, in preparation



CLOSING THOUGHTS

| admired FP a lot, even though | did not know him very well.

| was a brash academic teenager when | first reached out to him,
asking by email for a preprint of the PS91 paper, and to be put on
his preprint list!

We had email correspondence off/on over the next 20 years,
ranging from early 1990’s debates on how to put stars in the HR
diagram to early 2010’s discussions of young brown dwarf
pulsation.

Were he here today, | would have looked forward to discussing
with FP the new results on eclipsing binaries, the complicated
phase space of young star variability, recent work on pre-ms
accretion histories...and impacts of all of these on HR diagrams.



