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3Dipartimento di Fisica e Astronomia and CSDC, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
4 INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy;
5 Department of Physics, Ramakrishna Mission Vivekananda University, Belur Math, Dist Howrah 711202 West Bengal, India

• Filaments in galactic molecular clouds are (at least in their initial stages) mainly

gravitationally supported structures, that also harbor star-forming cores (Fig.

taken from [12]).

• Remarkably, observations suggest that filaments are in non-thermal states [2]; a

good description seems to be given by polytropic equations of state ρ ∝ T n or

P ∝ ργ [16, 17]. In general it is believed that this is due to the interplay between

local turbulence, radiation, and magnetic fields.

To stay simple, we neglect the contribution of magnetic fields. In the fluid picture,

the dynamical evolution of self-gravitating filaments is given in terms of mass den-

sity ρ, pressure P , gravitational potential Φ and velocity field u by
∂tρ = −∇ · (ρu),

∂tu + (u · ∇)u = −∇Φ− 1

ρ
∇P,

∆Φ = 4πGρ,

(1)

that can be closed by assuming an equation of state P = P (ρ) and whose stationary

states can be effectively studied under some simplifying hypotheses, e.g., cylindrical

symmetry [16, 17]. We adopt an even simpler model of a filament: assuming our

system is infinitely extended along its longitudinal (z) axis with perfect cylindrical

symmetry, its dynamics is that of a system of infinite straight massive wires, whose

mutual interaction is described by a two-dimensional (logarithmic) gravitational

potential [13]. Hence, The dynamics in the plane transverse to the z direction is

governed by the Hamiltonian of a two-dimensional system of N self-gravitating

particles,

H =

N∑
i=1

p2
i

2m
+ Gm2

N∑
i,j=1

log
||ri − rj||

rs
, (2)

where rs is an arbitrary length scale making the argument of the logarithm dimen-

sionless and the masses m are related to the total mass per unit length M` of the

filament by m = M`/N . We thus integrated the equations of motion derived from

Eq. (2).

Introduction

To begin with we performed direct N -body simulations of the system (2). In order

to effectively explore different initial conditions we were limited to rather small N ’s,

of the order of 104. To go to larger N ’s we first resorted to standard gravitational

particle-in-cell (PIC) methods. The latter however may underestimate the contribu-

tion of close encounters that may be relevant. To overcome this problem we adopted

a novel method [4, 5] allowing to introduce collisional processes into standard grav-

itational particle-in-cell code (PIC). The multi-particle collision scheme (MPC),

originally introduced in the context of fluid dynamics [8], is based on three simple

steps:

1. The system of Np particles is partitioned in Nc cells.

2. Inside each cell the velocities are stochastically reshuffled in a way that the in-

variant quantities are preserved (i.e. energy and momentum).

3. All particles are propagated freely, or under the effect of an external force if

present (In our case the latter is obtained as −∇Φ, where the potential Φ

is recovered on a mesh with the standard PIC method and Poisson equation

∆Φ = 4πGρ).

In a simple two dimesnional implementation, at the beginnig of each timestep δt, in

the cell of indexes i, j first of all the center of mass velocity is evaluated as

uij =
1

nij

nij∑
k=1

vk. (3)

Then ϑij is sampled from a uniform distribution in (0, 2π). The collision it-

self is simulated by rotating with probability one-half their relative velocities

δvk = vk − uij, as

v′k = uij +Rij · δvk, (4)

where Rij is the 2D rotation matrix of an angle ϑij. Such a rotation guarantees the

conservation of the total momentum and kinetic energy in the cell:

Pij =

nij∑
k=1

mvk =

nij∑
k=1

mv′k, (5)

and

Kij =
1

2

nij∑
k=1

mv2
k =

1

2

nij∑
k=1

mv′2k . (6)

Since the effective collisionality may in principle depend on the local state of the

system (i.e. temperature and density), the collision move is accepted only if a ran-

dom probability P∗ij sampled from a uniform distribution in (0, 1) is smaller than

the cell dependent collision probability

Pij = 1− exp
[
−(vij∆tnijdij/∆x∆y)2

]
. (7)

In the expression above, vij and dij are the average velocity and average interparti-

cel distance in the cell, respectively.

Typically, in our simulations we use N ≈ 1.5× 106 particles on a 256× 256 cartesian

grid.

Numerical methods

We study the dissipationless collapse [6] of initially cold (i.e. 2K/|W | < 1), cylin-

drically symmetric overdensities with Gaussian radial density profile with different

mean-square-radius rc (in units of half mass radius).

Monitoring the virial ratio, it appears that the systems undergo a violent relaxation

phase, the more violent as 2K/|W | is close to 0 at t = 0. The kinetic temperature

profile (i.e. average particle kinetic energy at given radius, see Fig. above) varies

strongly throughout the collapse phase.
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The density and temperature profiles of the final states of PIC-MPC, PIC and

N−body simulations show the same trend with the initial virial ratio. That is, all

models have flat almost isotherml cores and powerl-law tails. Colder systems have a

strong temperature-density anticorrelation when collisions are included.
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The density profiles are quite well fitted by the empiric law [2]

ρ(r) =
ρcr

α
c

(r2c + r2)α/2
, (8)

that approximates the solution of Eqs. (1) if the polytropic equation of state is

added to the system. Note that for α = 4, Eq. (8) gives the Ostriker isothermal

solution [9]. For the systm shown here α ranges from ≈ 1.9 for 2K/|W | = 0 to ≈ 8

for 0.7.
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condition (i.e. varying the scale radius

rc at fixed mass) yields different results

for fixed initial virial ration (see fig. on

the left). As a genral trend, more con-

centrated system (with or whithout col-

lisions) have steeper final density profiles

and stronger temperature gradients from

core to outer regions.

Dissipationless collapses

As additional cases (and in the same line of our previous investigation on long-range

systems [14, 15]) we also studied the evolution of isothermal Ostriker filaments [9]

undergoing strong radial perturbations.
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For all cases subjected to a radial compression (or expansion) with a typical velocity

larger than roughly σ/2, where σ is the velocity dispersion at equilibrium, the final

states are non-thermal with manifest temperature-density anti-correlation. Both

PIC-MPC and direct N−body simulations yield qualitatively similar results.
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Surprisingly the temperature vs density profiles appear to be well fitted by a poly-

tropic in the region where they are anticorrelated. In general the quality of the fit

systematically increases for systems undergoing stronger perturbations.

Perturbed isothermal states

The presence of long-lived non-thermal states is not a feature of self-gravitating sys-

tems alone. Any many-body system governed by long-ranged interactions exhibits

such quasi-stationary states, provided the number of particles N is large enough

such that collective interactions dominate over binary encounters as far as the dy-

namics of the single-particle distribution function f is concerned. Moreover, such

states typically exhibit temperature inversion, when arising after the damping of

strong collective oscillations [3, 14, 15, 7]. The simplest example is the Hamiltonian

Mean Field (HMF) model [1]

H =

N∑
i=1

p2i
2

+
1

2N

N∑
i,j=1

[1− cos(ϑi − ϑj)]. (9)

We start from a thermal equilibrium state and perturbe it such as to induce collec-

tive interactions in the system, e.g. by applying an external field for a short time

[14] or by rapidly quenching a parameter of the Hamiltonian [7], similar to what is

done for the model of the filament with a radial perturbation. We monitor the oscil-

lations of the order parameter (mx,my) = 1
N

(∑N
i=1 cos(ϑi),

∑N
i=1 sin(ϑi)

)
and after

the oscillations are damped we check the resulting temperature T (ϑ) and density

n(ϑ) profiles. T and n are typically markedly anticorrelated.
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Remarkably, also for the non-thermal

states of the HMF model the relation

between n and T is nicely fitted by a

polytropic when n and T are anticorre-

lated.

A possible mechanism to explain the reason why these non-thermal states exhibit

temperature inversion is the fact that during the intial violent relaxation phase the

interaction of the particles with the collective oscillations may produce suprathermal

tails in the velocity distribution function. In an inhomogeneous system, this may

trigger a “velocity filtration” mechanism [10, 11] that effectively broadens the ve-

locity distribution f (v) when the system is less dense, because only sufficiently fast

particles may escape the potential well produced by the central concentration.
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Connection with long-range systems

• Dissipationless collapse produces dynamically supported non-thermal end states

that look very similar to those observed in filaments, without the need to invoke

other mechanisms for their support

• Non-thermal long-lived states with temperature inversion may occur in any long-

range-interacting system after the damping of collective oscillations

• Some instances exhibit marked temperature inversion (ρ and T are anticorre-

lated). This is stronger for more concentrated initial conditions and colder initial

states as well as for strongly perturbed initially isothermal states

• Both collisions and interactions between particles and collective oscillations may

be important to enhance the temperature inversion

• Our model might be too simple yet to allow quantitative comparison with obser-

vations; the next step is the inclusion of magnetic fields
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