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Abstract. We present an overview of the scattering process by a two-
level atom, aimed at clarifying how the polarization of the scattered radia-
tion is affected by the main physical factors — atomic transition, magnetic
field, depolarizing collisions, lower-level polarization, stimulated emission.

1. Introduction

The general theory of line formation in the presence of a magnetic field is based
on the NLTE approach: here one has to find a consistent solution for the radi-
ation field and for the state of matter (the atoms and ions interacting with the
radiation field) at each point of the medium considered. The basic equations
involved are the statistical equilibrium equations for the (non-diagonal) atomic
density matrix and the radiative transfer equation for polarized radiation. The
solution to the problem implies complex numerical calculations, which usually
make difficult to understand the underlying physics — the role of the different
processes at the atomic level.

In an attempt to clarify this role, we consider here just one of the ‘steps’
involved in the NLTE problem, that is, the behaviour of an atom under given
physical conditions. In other words, we consider an atom illuminated by a given
radiation field, in the presence of a given magnetic field and of given collisional
rates, and we study the properties of the re-emitted radiation.

We further restrict the problem to the following: i) a two-level model atom,
each level being characterized by a total angular momentum J; in the notation
|aJM >, J is the quantum number associated to angular momentum, M the
magnetic quantum number associated to its projection on the quantization axis,
and « is a collection of inner quantum numbers of the atomic Hamiltonian;
ii) an isotropic distribution of colliding particles, able to produce depolarizing
(elastic) collisions; we disregard inelastic collisions that can induce transitions
between the two levels; iii) we assume the incident radiation to be frequency-
independent across an interval centered at the transition frequency vy and wider
than the inverse lifetimes of the levels and of the Zeeman splittings produced
by the magnetic field: this limitation is intrinsic to the equations used in the
following.
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We refer to the equations written in the formalism of spherical tensors.
In this formalism, the elements of the density matrix between eigenstates of
angular momentum are replaced by linear combinations of them involving a
Clebsh-Gordan coefficient (or a 3-j symbol), referred to as statistical tensors,

pg(aj) = Z (-1)7™M\2K +1 ( ]\{I —(]{/I’ _KQ ) <aJM/|p|laJM' > .
MM

In particular, the = 0 components of the statistical tensors are linear com-
binations of populations of the magnetic sublevels (and p} is proportional to
the overall population of the aJ-level), while components with non-zero @} are
combinations of coherences between different magnetic sublevels. The statistical
tensors with K = 1 or K = 2 are usually referred to as atomic orientation and
alignment, respectively.

The statistical equilibrium equations for the statistical tensors of the upper
and lower level, written in a reference system where the atom is at rest and with
the z-axis in the magnetic field direction, read (see, e.g., Landi Degl’Innocenti
1984, 1985; Landi Degl’Innocenti, Bommier, & Sahal-Bréchot 1990)
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The structure of the two equations is quite similar. For instance, the statistical
tensors of the upper level have a positive contribution from absorption processes
(rate T4 ) and a negative contribution from spontaneous and stimulated emission
processes (rates Rg and Rg). The first term in the right-hand side, where vy, is
the Larmor frequency and g, the Landé factor of the upper level, is responsible
for the Hanle effect. The rate D in the third line describes depolarizing collisions:
it is independent of ) as a consequence of the assumed isotropy of collisions,
and it is identically zero for K = 0 because depolarizing collisions only affect
atomic polarization, not populations.

In stationary situations the time derivatives in the left-hand sides are zero
and we are left with an algebraic, linear, homogeneous system of equations with
zero determinant which must be supplemented with the trace equation describing
the normalization of the density matrix,

V2Ji+1 pd(8) + V2T +1 pd(u) = 1.

Once the incident radiation, the magnetic field and the collisional rates are
specified, all the coefficients are known: to determine the state of the atom
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simply means solving the algebraic system. The only problem with this is that,
even for simple transitions (that is, low J values), we get a large number of
equations. This is why it is difficult to derive any general result unless some
additional approximation is introduced.

2. The unpolarized-lower-level approximation

A widely used approximation is to neglect the atomic polarization of the lower
level. This is correct — by definition — for the transition (J; = 0,J,, = 1). In
general, this approximation is justified when, for the lower level, the collisional
rates are much larger than the radiative rates, and this is especially true in
the presence of a weak radiation field; therefore, the unpolarized-lower-level
approximation also implies that stimulated emission can be neglected.

The simplification so obtained is obvious: as Rg = Ay 0xk’ 0ggr, where
Ay is the Einstein coefficient for spontaneous de-excitation, in the equation
for the upper level we can factor out — in stationary situations — the upper-
level statistical tensors, which turn out to be proportional to the lower-level
population,

TA(auJuKQaaéJZOO) pO(e) (1)
ut + 270 9u Q + DlawuK) 7O

pau) =

Since the emissivity in each of the Stokes parameters depends linearly on the
upper-level statistical tensors, and since the radiative rate for absorption is pro-
portional to the radiation field tensor (which is the solid-angle average of a linear
combination of the Stokes parameters of the incident radiation), we immediately
obtain an analytical expression relating the emissivity (in a given direction, and
at a given frequency) to the Stokes parameters of the incoming radiation.

We consider in succession 3 sub-cases: I) no collisions, no magnetic field
(that is, resonance polarization); II) then we add a magnetic field, to see the
modifications to resonance polarization due to the Hanle effect; III) next we look
at the modifications due to depolarizing collisions.

I) Resonance polarization. The coefficient relating the upper-level statistical
tensors to the population of the lower level is simply the absorption rate Ta
divided by the spontaneous emission rate, that is, the Einstein coefficient A,;.
Substituting the expression for T, we can write the emissivity in the form

- aQ & - = - ,
€ (v, Q) o« ¢p(vo —v) f s S PR, Q) Sj(vo, ) (i=0,1,2,3) ,
=0

where, neglecting the width of the lower level

r Ay

1
S R =

A7

The element (7, j) of the scattering matrix P gives the contribution of the j-th
Stokes parameter of the incoming radiation to the emissivity in the i-th Stokes
parameter. If we introduce the scattering angle ©, and define the positive-Q)
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Figure 1.  Fractional polarization of the scattered radiation for dif-
ferent transitions, calculated from Egs.(2).

direction as the perpendicular to the scattering plane (both for the incoming
and for the outgoing radiation), the matrix P takes the simple form

— W5 (1—3cos?0) 3 W, sin? © 0 0
3 W, sin®© 3 Wy (1+ cos?©) 0 0
P =

0 0 % Wy cos © 0

0 0 0 % W1 cos ©
with ,
1 1 K
Wk = 3(2Ju + 1) { g, J, Jp } .

These expressions show that: i) The emissivity in each of the Stokes param-
eters has the same frequency dependence (a Lorentzian profile centred at the
transition frequency and having a width related only to the natural width of
the upper level): therefore, the fractional polarization is frequency-independent.
ii) For an unpolarized incident beam, the U Stokes parameter of the scattered
radiation is zero and the () Stokes parameter is positive: thus the scattered lin-
ear polarization is always perpendicular to the scattering plane. iii) The matrix
P depends both on the scattering geometry (the angle ©) and on the atomic
transition, through the J quantum numbers of the upper and lower level. iv)
The Wy coefficient is related to linear polarization, the W7 coefficient to circu-
lar polarization; note that circular polarization can be present in the scattered
radiation only if some circular polarization is already present in the incident
radiation.

To quantify the dependence of scattered polarization on the atomic tran-
sition, we can consider two extreme situations. If the incident radiation is an
unpolarized beam, the fractional linear polarization is maximum for ® = 90°;
if the incident radiation is a totally circularly polarized beam, the fractional
circular polarization is maximum for ® = 0°. Such polarizations are given by

G_Q_ 3W2 G_V_ 3W1
e A—Wy' e 2+ Wy’

(2)

and are plotted in Fig.1 (left and right panel, respectively) as functions of
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Figure 2.  Hanle diagrams for the transition (J, = 1, J, = 2). Left:
assuming the lower level to be unpolarized. Right: allowing for lower-
level polarization.

Jg, for transitions with AJ = J, — J; = 0,+1. We see that the ‘polarizing
efficiency’ depends in a complicated way on the atomic transition: in the case
on the left, only the transition (0,1) has efficiency unity; all the others have an
efficiency below 0.5. For large J values, the transitions with AJ = 0 are the most
efficient. In the case on the right, there are 3 transitions with efficiency unity:
(0,1), (1/2,3/2), and (1/2,1/2). The efficiency remains large for all transitions
with AJ = 1, followed by those with AJ = —1, which are the least efficient with
respect to linear polarization.

IT) Resonance polarization in the presence of a magnetic field, or the Hanle
effect. Now we have an additional term in the denominator (see Eq.(1)): the
upper-level statistical tensors are the same as in the zero-field case (where it is
understood that the same radiation field and reference system is used), divided
by (1 +iQH), where i is the imaginary unit and the dimensionless quantity H
is the ratio of the Larmor frequency (times the Landé factor of the upper level)
to the Einstein coefficient for spontaneous emission,

x,  _ 1P6(w)]B=o _ 2muLgy
Q(U)—Wa H_Tuﬁ' (3)

This expression contains the basic features of the Hanle effect: it shows that
the @ = 0 components of the statistical tensors (hence the populations of the
magnetic sublevels) are unaffected by the magnetic field, while coherences are
both reduced and de-phased. The maximum sensitivity for these phenomena is to
be expected for H values close to unity. It is well-known the lucky circumstance
that for typical values of the Einstein coefficient and of the Landé factor, H
unity means a field strength of about 10 G: this led to the recent ‘re-discovery’
of the Hanle effect for astrophysical applications, mainly to solar prominences.
The Hanle effect is typically visualized by considering the 90° scattering of
an unpolarized radiation beam, with a magnetic field perpendicular to the beam
and making some angle 8 with the line of sight, and by plotting, one against the
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Figure 3. The emissivity (in arbitrary units) of the transition
(Je =0, J, = 1) corresponding to the 90° scattering of an unpolarized
incident beam. The profiles are plotted against reduced frequency. The
magnetic field is characterized by H = 1, 8 = 0°.

other, the frequency-integrated fractional emissivities in ) and U,

pQ:/GQdV//GIdI/, pU:/GUdI///GIdI/,

while varying the field modulus and the angle (.

An example for the transition (J, = 1, J,, = 2) is shown in Fig.2 (left). Full
lines correspond to constant 3, dashed lines to constant field modulus: these are
labelled by the value of the parameter H. For zero field we have only @ (polar-
ization perpendicular to the scattering plane), with the value corresponding to
‘pure’ resonance polarization — something less than 0.3. When H is increased,
coherences are reduced and de-phased, so we get some U; which again vanishes
for sufficiently large H. The diagram is degenerate for opposite (3 values, while
inversion of the magnetic field’s direction yields the same () and opposite U.

But when a magnetic field is present, besides the reduction and de-phasing
of the upper-level statistical tensors, there is also a Zeeman splitting of the
magnetic sublevels, whose effects show up when we look at the profiles of the
emissivity rather than the frequency-integrated emissivity.

An example is shown in Fig.3. The I, @), and U profiles originate from the
combined effect of Zeeman splitting and atomic alignment, whereas the V profile
is due only to Zeeman splitting, because an incident unpolarized beam cannot
induce atomic orientation. It is especially interesting to look at the profiles of
fractional polarization (Fig.3 right). We see that in the far wings, U/I and V/I
tend to zero, but /I tends to unity, which is the value of resonance polarization
(zero magnetic field) for the transition (J; = 0, J,, = 1). In fact it can be proved
that, for any transition, the Hanle effect vanishes in the far wings.

ITT) Consider the effect of depolarizing collisions. Now we have a third
term in the denominator (see Eq.(1)), and besides the ‘Hanle parameter’ H
we can introduce a new dimensionless quantity: the ratio of the collisional rate
D(ay J, K) to the Einstein coefficient A,y, that may be regarded as the ‘effective’
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Figure 4.  Effect of depolarizing collisions on the profiles of Fig.3.

number of depolarizing collisions (for the statistical tensors of rank K) taking
place during the lifetime of the excited level,

_ [p§(u)] B=0, p=0

QW) = T 0+ u(K)

u(K) = D(T ®

The new term 6, (K) is real, so the net effect is a reduction of polarization (atomic
polarization, and therefore polarization of the scattered light). Moreover, the
profiles of the emissivity will be broadened by the addition of a collisional damp-
ing constant I'.

Figure 4 shows how the profiles of Fig.3 (dashed curves) are changed by
the presence of depolarizing collisions such that the parameter d,(2) is 0.2 and
the ratio of collisional to radiative damping constant is appropriate to Van der
Waals-type interactions (I'c/T" = §,(2) x 5/3). The effect is more obvious on
fractional polarization, which is reduced at every single frequency; especially
obvious is the effect on the asymptotic value of Q/I.

3. The effects of lower-level polarization

Let’s see how things change if we allow for the presence of lower-level atomic
polarization. Now there is no short cut: we must solve the coupled system of
equations for the upper and lower level.

Consider first the non-magnetic case (resonance polarization). In general,
besides the quantity ¢, (K) of Eq.(4) it is necessary to introduce two additional
(dimensionless) parameters: the ratio between the total absorption and sponta-
neous emission probability — or, equivalently, the number of photons per mode
at the transition frequency averaged over the solid angle,

n =

(2Je +1) Beu I3 (o) _ ¢ 70(0)
(2Jy +1) Ay 2h3 OV
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Figure 5.  The effect of lower-level polarization on the fractional lin-
ear polarization of the scattered radiation, for different transitions.

and the ratio of the collisional rate for the lower level to the absorption rate,

5(K) = D(yJeK) — 2Jp+1 D(eK) 1
T B J0wo)  20u+ 1 Ay W

To get a general idea of the effects of lower-level polarization, we may refer
again to the 90° scattering of an unpolarized radiation beam and look at the po-
larization of the scattered radiation. Assuming 7 < 1 (no stimulated emission)
and neglecting collisions (0, (K) = d¢(K) = 0), we obtain the results of Fig.5.
The dashed curves correspond to the unpolarized-lower-level approximation (cf.
Fig.1 left), the solid curves take lower-level polarization into account. We see
that there is a large increase of polarization for transitions with AJ = 1, a small
effect for transitions with AJ = 0 — with the only exception of the transition
(1,1) — and something intermediate for AJ = —1: here the most interesting
aspect is that Q)/I is negative, thus the polarization is parallel to the scattering
plane.

Hanle effect with lower-level polarization. The main point is this one: under
the unpolarized-lower-level approximation, the Hanle effect is basically described
by the parameter H of Eq.(3), the ratio between the Larmor frequency and the
rate for spontaneous emission; now we should expect that the corresponding
parameter for the lower level, i.e., the ratio between the Larmor frequency and
the absorption rate, also plays a role. And we should expect that the ratio of
the typical field intensities for lower- and upper-level depolarization be approx-
imately the same as the ratio of the two rates, namely the average number of
photons per mode 7.

Figure 2 (right) shows the Hanle diagram for the transition (J, = 1, J,, = 2),
relative to the collisionless case and to the usual scattering geometry (90°, with
an unpolarized incident beam and a magnetic field perpendicular to the beam).
The parameter 7 is very small (107°), so we have two clearly distinct regimes:
the lower, characterized by H values of order unity, is the ‘ordinary’ Hanle
effect and corresponds to the destruction of upper-level coherences; the upper,
characterized by H values of order 1076, is referred to as lower-level Hanle effect
and corresponds to the destruction of lower-level coherences.
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Figure 6. Fractional linear polarization of the scattered radiation
for different transitions (Jp-Jy,), as a function of the beam intensity
expressed in terms of the average number of photons per mode 7.

4. The effects of stimulated emission

Finally, a look at the effects of stimulated emission. Now lower-level polarization
must be taken into account, because when the radiation field is not weak (that is,
7i is comparable to unity) it doesn’t make sense to invoke depolarizing collisions
in the lower level only: the radiative lifetimes of the upper and lower level become
comparable, and if collisions are so strong to destroy lower-level polarization,
they will also destroy upper-level polarization.

Figure 6 shows what happens to resonance polarization when the radia-
tion field intensity is increased. The figure refers to the usual 90° scattering
geometry, an incident unpolarized beam, no collisions, no magnetic field. For
some transitions with low J values the scattered polarization is unaffected by
the field intensity: (0,1) and (1,1) with polarization unity; (2,1) with a small
negative polarization; (1/2,1/2) and (3/2,1/2) with polarization zero. But for
all the others, the polarization decreases (in absolute value) with increasing field
intensity.

This can be understood if we consider that atomic polarization arises from
the fact that, in an anisotropic environment, transitions between certain mag-
netic sublevels of the upper and lower level are more efficient than the others
in absorbing radiation, and this produces a population unbalance; but when
stimulated emission is important, just the same transitions are more efficient in
emitting radiation, so the unbalance is reduced.

We have grouped the transitions according not to the AJ value, but to
integer and half-integer J, to point out a curious feature: if J is half-integer, the
polarization tends to zero, otherwise to a non-zero, transition-dependent value.

When we add a magnetic field (Hanle effect in the presence of a radiation
field of increasing intensity), the main effect to be expected is a mizing of the
two regimes of the ‘ordinary’ and ‘lower-level’ Hanle effect, because the radiative
lifetimes of the upper and lower level tend to become comparable.

This is illustrated in Fig.7, which shows how the Hanle diagram of Fig.2
(right) changes when the intensity of the incoming beam is increased. The two
distinct regimes of Fig.2 (right), where n = 105, are partly mixed for n = 0.03
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Figure 7. Hanle diagrams for the transition (J, = 1,J, = 2) cor-
responding to different intensities of the incident radiation beam:
7. = 0.03 (left) and 7 = 0.5 (right).

and completely merged for 7 = 0.5. In the panel on the right the double-lobe
shape of the diagram has completely disappeared. At the same time the zero-
field polarization is smaller, consistently with the results of Fig.6 (left).
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Discussion

S. SAHAL-BRECHQT: If collisional line broadening includes depolarizing col-
lisional cross sections, it also includes other contributions such as elastic cross
sections which do not depolarize. Collisional line broadening also includes an
interference term between the upper and lower level. Do you take into ac-
count elastic terms in your expressions for the collisional broadening of the levels
(lines)?

M. LANDOLFI: In the example of Fig.4 we neglected the interference term,
as well as the broadening of the lower level due to elastic collisions: we used
an approximate expression for the collisional broadening valid for dipole-dipole
interactions. However, the precise value of the collisional damping constant does
not change the qualitative effect shown in the figure, particularly the fact that,
when collisions are present, the Hanle effect does not vanish in the far wings of
the line.



