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Abstract. We present the results of a statistical study of the magnetic structure of upper main sequence chemically peculiar
stars. We have modelled a sample of 34 stars, assuming that the magnetic morphology is described by the superposition of a
dipole and a quadrupole field, arbitrarily oriented. In order to interpret the modelling results, we have introduced a novel set of
angles that provides one with a convenient way to represent the mutual orientation of the quadrupolar component, the dipolar
component, and the rotation axis. Some of our results are similar to what has already been found in previous studies, e.g., that
the inclination of the dipole axis to the rotation axis is usually large for short-period stars and small for long-period ones – see
Landstreet & Mathys (2000). We also found that for short-period stars (approximately P < 10 days) the plane containing the
two unit vectors that characterise the quadrupole is almost coincident with the plane containing the stellar rotation axis and
the dipole axis. Long-period stars seem to be preferentially characterised by a quadrupole orientation such that the planes just
mentioned are perpendicular. There is also some loose indication of a continuous transition between the two classes of stars
with increasing rotational period.
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1. Introduction

Magnetic chemically peculiar (CP) stars of the upper main
sequence represent an astrophysical laboratory for the study
of the interplay between magnetic field and the stellar photo-
spheric plasma.

The magnetic field of CP stars is relatively strong (up to a
few tens of kG) and is characterised by a smooth geometry, thus
it can be easily detected via spectropolarimetric techniques. At
the same time, magnetic CP stars are not rare objects (they rep-
resent about 10% of all A and B stars), which makes it possible
to observe how magnetic fields affect the stellar photospheres
in many different situations (i.e., in stars of different age, mass,
temperature, etc.). It appears for instance that magnetic fields
tend to be stronger in hotter than in cooler stars (Landstreet
1992; Mathys et al. 1997; Hubrig et al. 2000). The presence of a
magnetic field is generally associated with a non-homogeneous
distribution of the chemical elements (both horizontally and
vertically), and long rotational periods (up to several decades).
Studying these phenomena, in particular the way various stel-
lar features correlate with the magnetic field, may permit us to
improve our knowledge of stellar astrophysics in general, as it
is reasonable to hypothesise that those phenomena that are so
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pronounced (thus so well observed) in magnetic CP stars play
also some role in “normal” upper main sequence stars.

As a matter of fact, most of the physics that we could learn
from the study of CP stars is not yet understood. One of the fun-
damental issues that still needs to be clarified is the origin of
the magnetic field. Hints to the solution of this problem could
come from more statistical information on the magnetic field
geometries. In particular it would be important to know if there
exist “typical” magnetic structures, and if there are relation-
ships between magnetic fields and rotational velocity. There
is an obvious need for constraints from observations and con-
straints obtained from secure modelling results.

Some important steps have been accomplished in the last
few years, and information about the magnetic strength of
CP stars has been derived from simple attempts to correlate
magnetic field measurements with various stellar features. For
sharp-lined stars, Mathys et al. (1997) found that the mean field
modulus, averaged through the rotational cycle, is typically in
the interval between 3 and 9 kG, and that the 3 kG lower end
represents in fact a sharp cutoff of the distribution. (However,
it should be noted that, for mean field modulus values less than
1.5–2 kG, Zeeman splitting is typically smaller than the intrin-
sic line width, so that the mean field modulus cannot be mea-
sured. Therefore, it is more appropriate to say that the evidence
found by Mathys et al. 1997 is for a shortage of sharp-lined
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stars with mean field modulus between about 1.5 and 3 kG.)
Mathys et al. (1997) also discovered that the mean field mod-
ulus of stars with rotation period longer than 150 d is never
stronger than 7.5 kG, which suggests a sort of anti-correlation
between star’s rotation period and mean field modulus. Finally,
one of the most important findings about the magnetic struc-
ture of chemically peculiar stars was recently obtained from a
simple modelling of the mean longitudinal field and the mean
field modulus. Assuming an axisymmetric model described
by the superposition of a dipole plus colinear quadrupole and
octupole, Landstreet & Mathys (2000) found that slow rotat-
ing CP stars (i.e., stars with rotational period longer than one
month) have a magnetic axis tilted at a small angle (<∼30◦) with
respect to the rotation axis. It is clear that these kinds of infor-
mation are extremely valuable in order to explain the formation
of the magnetic field (see Moss 2001), and also to understand
all those phenomena that are most likely connected to the pres-
ence of a magnetic field, such as, e.g., the loss of angular mo-
mentum (Stȩpień & Landstreet 2002).

In the past, it has been commonly assumed that magnetic
fields of CP stars have a quasi-dipolar morphology that can be
described in terms of a low-order and axisymmetric multipo-
lar expansion. This assumption was based on the fact that in
several cases an axisymmetric morphology was indeed found
sufficient to interpret the available observations – mainly rep-
resented by determinations of mean longitudinal field. Recent
developments of the observing techniques (including spec-
tropolarimetry of all Stokes profiles, see Wade et al. 2000a),
followed by attempts to interpret the newly obtained data, point
to evidence for ubiquitous departures of the magnetic struc-
tures from axisymmetric geometries (e.g., Mathys et al. 1997;
Bagnulo et al. 1999, hereafter Paper II; Bagnulo et al. 2001).
From the theoretical point of view we note that – should the
field be either a fossil relic or dynamo generated – there is no
reason why stellar magnetic fields should have cylindrical sym-
metries. In fact, there is no reason why a fossil field should have
an axisymmetric geometry, and it is theoretically predicted that
dynamo generated fields do develop a non-axisymmetric ge-
ometry (Moss 2001). These considerations prompt for further
searches for statistical properties of the magnetic structures of
CP stars by making use of a modelling technique not limited
by simplifying approximations on the magnetic geometry. A
fully adequate modelling technique based on the inversion of
Stokes profiles may exist: the Zeeman Doppler Imaging (ZDI;
see Piskunov & Kochukhov 2002). However, only few stars
have been modelled in detail through the inversion of Stokes
profiles (e.g., α2 CVn, see Kochukhov et al. 2002). We are
lacking sufficient high quality data (in terms of spectral and
phase coverage, spectral resolution and signal to noise ratio) to
be able to perform a statistically meaningful analysis based on
ZDI. On the other hand, we have at our disposal a large num-
ber of magnetic field observations obtained through measure-
ments of Zeeman splitting and of the low-order moments of
Stokes profiles I and V , such as the aforementioned mean field
modulus and longitudinal field, but also the crossover and the
mean quadratic field. These kinds of data (referred to as “mag-
netic observables” – see, e.g., Bagnulo et al. 2000, hereafter
Paper III) can be obtained from comparatively low-resolution,

low signal-to-noise ratio spectra, even, in certain cases, from
spectra recorded with photographic plates, making it possi-
ble to extract information on the stellar magnetic geometry
from observational data that are not suitable for application of
straight inversion techniques.

In this paper we present a statistical investigation of the
magnetic structure of CP stars based on the interpretation of
the magnetic observables, under the assumption that the stel-
lar magnetic field is described by the superposition of a dipole
and a quadrupole field, arbitrarily oriented. Although it seems
unlikely that such a low-order multipolar expansion can ac-
curately describe the real magnetic configurations of CP stars
(see, e.g., Bagnulo et al. 2001), it is reasonable to hope that
the analysis of a large sample of stars can still provide us with
some insight into the problem of whether there exist statisti-
cal properties of the magnetic structures of CP stars other than
those that have been already found.

A formalism for the description of the magnetic field in
terms of dipole plus quadrupole (arbitrarily oriented) was pre-
sented by Bagnulo et al. (1996) and Landolfi et al. (1998)
– hereafter Paper I – and modelling results for individ-
ual stars were presented, e.g., in Paper II and Bagnulo &
Landolfi (1999). Preliminary statistical results were presented
by Bagnulo (2001), who found for instance that in faster ro-
tating stars, one of the unit vectors that define the quadrupolar
component is generally aligned to the rotation axis. Then it was
realised that a set of new angles could be adopted in order to
obtain a clearer description of the statistical results, in particu-
lar by explicitly referring to the orientation of the plane defined
by the quadrupolar component with respect to the dipole axis
and the rotation axis. Such angles are introduced in Sect. 2,
which also presents the guidelines for the statistical analysis
performed in Sects. 3 and 4. In Sect. 5 we summarise and
briefly discuss our results.

2. Analysis of observations: Generalities

We tried to interpret the observations of mean longitudinal
field, crossover, mean quadratic field – as defined by Mathys
(1995a, 1995b) – and mean field modulus for a sample of
34 magnetic CP stars in terms of the oblique rotator model with
a dipole plus (non linear) quadrupole field. For such model, the
magnetic field vector at the point r of the stellar surface is given
by (see Paper I)

B(r) = Bd(r) +Bq(r) ,

where

Bd(r) = −Bd

2

[
u − 3

u · r
R2∗

r
]
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Here R∗ is the star’s radius; Bd and Bq are the dipole and
quadrupole amplitude, respectively; the unit vector u specifies
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the direction of the dipole axis; the unit vectors u1, u2 specify
the orientation of the quadrupole.

The four magnetic observables are denoted in this paper by
the notations
〈Bz〉 → mean longitudinal field

ve sin i 〈dBz〉 → crossover

〈B2 + B2
z 〉1/2 → mean quadratic field

〈B〉 → mean field modulus.

(1)

The expressions relating these quantities to the model parame-
ters were derived, under certain assumptions on the stellar at-
mosphere, by Bagnulo et al. (1996), and rewritten in a more
compact form in Papers I and III, respectively. An inversion
procedure for recovering the model parameters from observa-
tions of 〈Bz〉, ve sin i 〈dBz〉, and 〈B2 + B2

z 〉1/2 was described
extensively in Papers I and II, and subsequently generalized
in Paper III to include observations of 〈B〉, measurements of
projected equatorial velocity, and estimates of the stellar ra-
dius. For this work we used the numerical code described in
Paper III, with the only difference that linear polarization ob-
servations, not available for most of the stars in our sample,
were disregarded.

The magnetic geometry of the dipole plus quadrupole
model is illustrated in detail in Paper I. We simply recall that
such model depends on the following 10 parameters:

– Bd and Bq;
– ve, the stellar equatorial velocity;
– i, the inclination of the stellar rotation axis to the line of

sight;
– β, the angle between the direction u and the rotation axis;
– β1 and β2, the analogues of β for the directions u1, u2;
– γ1 and γ2, the azimuthal angles of u1, u2 about the rotation

axis;
– f0, the “reference” rotational phase of the model (see Fig. 1

of Paper I).

The angles i, β, β1, β2 range from 0◦ to 180◦, while γ1, γ2, f0
range from 0◦ to 360◦. The rotational period P and the limb-
darkening constant u, which also affect the expressions of the
magnetic quantities, are taken as fixed. In this work we adopted
u = 0.5 for all stars, but the results of the inversion proce-
dure are only slightly influenced by the u value, as discussed in
Papers I–III.

As explained in Paper III, observations of 〈Bz〉,
ve sin i 〈dBz〉, 〈B2 + B2

z 〉1/2, and 〈B〉, do not allow one to
distinguish between two magnetic configurations symmetrical
about the plane containing the rotation axis and the dipole axis.
Such configurations are characterised by the same values of
Bd, Bq, ve, γ1, γ2, f0, while the remaining angles are related by

(i, β, β1, β2)

(180◦ − i, 180◦ − β, 180◦ − β1, 180◦ − β2).
(2)

On the other hand, as shown in Paper I, exchange of directions
u1 and u2, as well as inversion of both (u1 → −u1, u2 → −u2),
leaves the magnetic configuration unchanged. This means that
the sets

(β1, β2, γ1, γ2)

(β2, β1, γ2, γ1)
(3)

and

(β1, β2, γ1, γ2)

(180◦ − β1, 180◦ − β2, 180◦ + γ1, 180◦ + γ2)
(4)

describe the same magnetic configuration.
A convenient way to visualise the quadrupole orientation is

to introduce the plane containing the unit vectors u1, u2 and its
pole Q, defined by

uQ =
u1 × u2

|u1 × u2|
if u1 × u2 , 0, undefined otherwise (see Fig. 1). The point Q
is characterised by the angles βQ and γQ, while the orientation
of u1, u2 in their plane is characterised by the angles χ1 and
χ2 reckoned from the “reference” semi-meridian (through R
and D), or, equivalently, by their linear combinations χ− and
χ+ defined by

χ− =


|χ1 − χ2| if |χ1 − χ2| ≤ 180◦

360◦ − |χ1 − χ2| if |χ1 − χ2| > 180◦,

χ+ =



(χ1 + χ2)/2 if |χ1 − χ2| ≤ 180◦

(χ1 + χ2)/2 + 180◦ if |χ1 − χ2| > 180◦

and (χ1 + χ2) < 360◦

(χ1 + χ2)/2 − 180◦ if |χ1 − χ2| > 180◦

and (χ1 + χ2) ≥ 360◦,

which represent the “width” and “barycentre” of the unit vec-
tors u1, u2, respectively. In the following we will refer to the
angles βQ, γQ, χ−, χ+ rather than to β1, β2, γ1, γ2.

The stars of our sample are listed in Table 1. The columns
contain the following data (from left to right): a reference num-
ber used in this paper; the HD number of the object; a second
identifier for the star; the stellar rotational period in days; the
number of observations used in this work for each of the four
magnetic observables; the observational value of the projected
equatorial velocity; the estimated value of the stellar radius.
The meaning of the last three columns (labelled with g, p1,
and p2) will be explained later.

Most magnetic field measurements were taken from
Mathys (1994) (mean longitudinal field), Mathys (1995a)
(crossover), Mathys (1995b) (mean quadratic field, but the
determinations were revised as explained in Mathys et al.,
in preparation), Mathys & Hubrig (1997) (longitudinal field,
crossover, quadratic field), Mathys et al. (1997) (mean field
modulus). We also considered additional measurements, to be
published by Mathys et al. (in preparation), most of which were
already used by Landstreet & Mathys (2000). Additional mean
longitudinal field data were taken from Bagnulo et al. (2001),
Borra & Landstreet (1977, 1978), Hildebrandt et al. (1997),
Hill et al. (1998), Leone et al. (2000), Leone & Catanzaro
(2001), Preston & Stȩpień (1968), Wade et al. (1996, 1997,
2000a, 2000b, 2000c). Further mean field modulus data were
taken from Huchra (1972), and Preston (1969).

The adopted value of the rotational period and estimates
of the projected equatorial velocity come mainly from the
same references as for the magnetic data. However, in many
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Table 1. The star’ sample analysed in this work. A dash in columns 〈dBz〉 (an abbreviation for ve sin i 〈dBz〉), 〈BBz〉 (an abbreviation for
〈B2 +B2

z 〉1/2), 〈B〉, and ve sin i, means that no observation was available. The last three columns show the value of the reduced χ2 corresponding
to the best-fit model, as derived from 3 different types of data analysis, i.e., considering all observed quantities (Col. g), considering all observed
quantities but 〈B2 + B2

z 〉1/2 (Col. p1), and considering all observed quantities but 〈B〉 (Col. p2). A blank in columns p1 and p2 means that the
star does not pertain to the sub-sample (see Sect. 4).

No. HD Other Identifier P 〈Bz〉 〈dBz〉 〈BBz〉 〈B〉 ve sin i R∗ g p1 p2

1 2453 GR And 519.5 33 6 6 14 – 2.97 2.08 2.25 1.57
2 12288 V540 Cas 34.91 20 – – 28 – 3.28 1.75 1.75
3 14437 AG+42 247 26.87 36 – – 31 – 3.08 1.96 1.96

4 24712 DO Eri 12.4592 82 7 5 – 5.6 1.83 3.56 3.56
5 51684 CD-40 2796 371.0 7 4 7 10 – 3.58 0.93 0.59 0.68
6 61468 CD-27 4341 322.0 5 5 5 15 – 4.16 > 8 6.29 1.57

7 65339 53 Cam 8.02681 66 6 – 36 13.0 2.56 4.21 4.21
8 70331 CD-47 3803 1.99812 16 16 16 38 – – 1.46 1.58 1.34
9 75445 CD-38 4907 6.29100 3 3 3 11 – 2.34 1.54 0.87

10 81009 KU Hya 33.9840 13 13 13 42 – 2.61 1.95 1.32 1.38
11 83368 HR 3831 2.851982 12 12 11 – 32.6 2.23 2.08 2.08
12 93507 CD-67 955 568.6 12 12 12 30 – 3.73 3.70 1.59 2.03

13 94660 KQ Vel 2764.0 12 12 12 25 – 3.15 > 8 1.60 1.39
14 96446 CD-59 3544 0.85137 9 9 9 – 10.0 6.43 2.98 2.98
15 116114 BD-17 3829 26.71 7 7 7 24 – 3.06 1.72 1.46 2.24

16 116458 HR 5049 148.39 20 20 20 21 – 3.54 2.42 1.89 2.01
17 119419 HR 5158 2.60090 22 22 22 – 34.8 2.23 1.71 1.71
18 125248 CS Vir 9.2954 31 21 21 – 8.0 1.97 1.85 1.85

19 126515 Preston’s star 129.95 25 19 19 22 – 2.35 4.56 2.99 4.35
20 137509 NN Aps 4.4916 14 14 14 – 28.1 3.59 1.20 1.20
21 137909 β CrB 18.4868 51 21 21 46 3.5 3.25 2.09 2.15 2.45

22 142070 AG-00 2049 3.37180 13 13 13 24 13.5 5.42 > 8 3.19 2.72
23 144897 CD-40 10236 48.6200 13 13 13 28 – 3.97 2.53 1.70 1.93
24 147010 V933 Sco 3.920676 19 19 19 – 22.1 2.85 1.68 1.68

25 153882 HR 6326 6.00890 17 17 17 – 21.0 3.81 2.17 2.17
26 175362 V686 CrA 3.67375 30 30 29 – 15.0 2.68 3.97 3.97
27 187474 V3961 Sgr 2364.0 20 20 20 40 – 2.93 3.82 3.59 3.36

28 188041 V1291 Aql 223.95 77 8 – 18 – 3.14 1.41 1.41
29 192678 V1372 Cyg 6.4186 14 – – 34 – 3.05 2.17 2.17
30 200311 V2200 Cyg 52.0703 24 – – 35 9.0 2.18 2.37 2.37

31 208217 BD Ind 8.44473 8 8 8 38 15.3 2.60 1.58 1.73 1.64
32 215441 Babcock’s star 9.4871 14 – – 11 5.0 2.45 2.51 2.51
33 318107 V970 Sco 9.70870 6 6 6 36 – 2.46 3.37 2.15 3.55

34 335238 AG+29 2421 48.7 3 3 3 18 – 3.69 1.52 1.15

cases, the rotational period was re-computed through a least-
square technique based on a second-order Fourier expansion to
the longitudinal field and mean field modulus measurements.
Estimates for the stellar radius R∗ were taken from North
(1998) and Hubrig et al. (2000). Additional R∗ estimates were
kindly provided to us by North (2001, private communication).

The aim of this study is not so much to find the “best” mag-
netic model for each individual star as to characterise the sam-
ple as a whole in order to see whether there are any “preferred”
magnetic geometries (in the framework of the assumed dipole
plus quadrupole model) and/or correlations between magnetic
model and the rotational period.

The main difficulty underlying an analysis of this kind is
due to the fact that the inversion algorithm usually produces,
for a given star, several different models, i.e., several sets of
parameters, corresponding to local minima of the χ2 hypersur-
face. As discussed in Papers I, II, and III, this is primarily due to
the relatively large observational errors. For some stars the χ2

values at the various minima are very different from each other,
but in other cases these values are not so different. Therefore, it
looks rather unsafe to restrict the statistical analysis to best-fit
models (i.e., those corresponding to the absolute χ2 minimum).
Furthermore, even if this restriction were applied, the magnetic
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Fig. 1. Geometry of the dipole plus quadrupole model. The rotation
axis intersects the stellar surface at R, and makes an angle i (not shown
in the figure) with the line of sight. D is the positive pole of the dipole.
Q is the pole of the quadrupole plane defined by the unit vectors u1

and u2.

models of the individual stars could not be considered equally
reliable, being characterised by different χ2 values.

The most natural way to deal with these problems is to
“weight” the parameter sets associated with the χ2 minima. In
this work we introduced a weight ρ j for each star, defined by

ρ j =
1

(χ2
min) j

( j = 1, . . . , 34), (5)

where χ2
min is the value of the reduced χ2 corresponding to the

absolute minimum, and a weight ρ jk for the kth parameter set,
defined by

ρ jk =
c j

[(χ2
jk)]p

(k = 1, . . . ,m( j)), (6)

where m( j) is the “multiplicity” of the jth star, i.e., the number
of minima in the χ2 hypersurface. The quantity c j is determined
by requiring that

m( j)∑
k=1

ρ jk = ρ j. (7)

The figures presented in the following were obtained for p = 2,
but the value p = 1 leads to quite similar results.

An additional difficulty concerns the type of observations
to be used for the modelling. In particular, as noticed already
in previous works (e.g., Paper III; Landstreet & Mathys 2000),
for many stars, 〈B2+B2

z 〉1/2 and 〈B〉measurements are not con-
sistent among themselves. For this reason we performed sepa-
rate investigations, by using all observations together (Sect. 3),

Fig. 2. Left: distribution of the minimum χ2 values for the mag-
netic models of the 34 stars of the sample (see Col. g of Table 1).
Right: same for the models corresponding to all (absolute and rela-
tive) χ2 minima. Further absolute and relative minima with larger χ2

values are not shown in the figure. See text for details.

and by disregarding either 〈B2 + B2
z 〉1/2 or 〈B〉 observations

(Sect. 4). The former kind of analysis, i.e., based on all ob-
servations together, has the obvious advantage that all the in-
formation available for a given star is used in the modelling;
moreover, all the 34 stars listed in Table 1 can be considered.
The latter kind of analysis may help to reveal if some results
are likely biased by systematic measurement errors.

3. Analysis based on 4 magnetic observables

In this section we present the results of the “global” analysis,
i.e., based on all the observations1. Column g of Table 1 shows
the value of the reduced χ2 corresponding to the best fit – abso-
lute minimum of the χ2 hypersurface. The same data is plotted,
in the form of a histogram, in Fig. 2 (left). One can see that
most of the best fits are characterised by χ2

min ' 2, with a sec-
ondary group at χ2

min
<∼ 4. However, for three stars – HD 61468,

HD 94660, and HD 142070 – no reasonable fit was found. This
may be ascribed to inconsistencies between 〈B2 + B2

z 〉1/2 and
〈B〉 observations: in fact, if either of them is neglected, the χ2

value decreases considerably (see Cols. p1 and p2 of Table 1).
However, we suspect that the magnetic morphology may be
rather more complex than a dipole plus quadrupole field, es-
pecially in the case of HD 142070, which exhibits a strongly
anharmonic mean field modulus curve. Those three stars were
excluded from the analysis described in this section.

Figure 2 (right) shows the distribution of the reduced
χ2 values for all the fits (corresponding either to the abso-
lute minimum or to relative minima of the χ2 hypersurface).
Altogether there are 168 minima, 12 of which with χ2 > 14.
The relevant distribution is quite similar to that of the left panel,
with a main group around χ2 = 2 and a secondary group at
χ2 ' 4; for larger values, the number of minima decreases
rapidly. We decided to confine our study to models with χ2 < 8:
this leads to 147 models, associated with the 31 stars of the
sample.

1 The magnetic observables considered in this section are in princi-
ple 4. However, since some stars lack observations of some kind (see
Table 1), the modelling is actually based on 4, 3, or 2 observables,
depending on the star.
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Fig. 3. Left: distribution of the dipole field amplitude. Bd is expressed
in kG. The isolated tooth on the far right is associated with Babcock’s
star (HD 215441, Bd ' 79 kG). Right: distribution of the ratio of qua-
drupole to dipole field amplitude.

Fig. 4. Distribution of the phase-averaged mean field modulus 〈B〉
(expressed in kG). The tooth on the right is Babcock’s star.

Consider first the magnetic field strength. Figure 3 (left)
shows the distribution of the dipole amplitude, Bd. It is a rather
regular, bell-shaped distribution peaking at something less than
10 kG; most models are characterised by Bd values ranging
from 3 kG to 20 kG. We recall that the histogram represents the
Bd distribution weighted according to Eqs. (5)–(7): explicitly,
the height of the histogram in the ith interval is

Ni =

31∑
j=1

m( j)∑
k=1

ρ(i)
jk ,

where ρ(i)
jk is given by Eq. (6) if the Bd value of the kth model of

the jth star falls in the ith interval, and is zero otherwise. The
right panel of Fig. 3 shows the distribution of the ratio between
quadrupole and dipole amplitude. It appears that the quadrupo-
lar contribution is generally important, with Bq values varying
approximately between 1/3 and 10 times the Bd value. Finally,
Fig. 4 shows the distribution of the phase-averaged mean field
modulus,

〈B〉 = 1
2π

∫ 2π

0
〈B( f )〉 d f ,

which quantifies the typical field strength for the stars in the
sample. Contrary to Bd and Bq, the value of 〈B〉 is – as ex-
pected – practically the same for all models of a given star: this
explains why the histogram of Fig. 4 is less “scattered” than
those of Fig. 3. Obviously, the quantity 〈B〉 is not (contrary
to Bd and Bq) intrinsic to the individual star, because it depends
on the inclination of the rotation axis with respect to the line

Fig. 5. Distributions of the angles specifying the magnetic geom-
etry, compared with the relevant random distributions. Angles are
expressed in degrees.

of sight (the angle i). We will comment further on this figure in
Sect. 4.

Next we consider the distributions of the different angles.
These are plotted in Fig. 5, together with the curves describing
the relevant random distributions (sinusoidal variation for i, β,
βQ, χ−; flat distribution for γQ and χ+). It should be noticed that
the apparent symmetry characteristics of several histograms is
just a consequence of the properties in Eqs. (2)–(4). The dis-
tributions of i and β are symmetrical about 90◦ because of the
degeneracy of Eq. (2), the distribution of βQ because of Eq. (3);
similarly, the distributions of γQ and χ+ are invariant under a
180◦ shift owing to Eqs. (2) and (4), respectively. By contrast,
the distribution of χ− is unaffected by those properties (no
symmetry characteristics).

It is obvious from Fig. 5 that most distributions, and es-
pecially that of βQ, are very different from the relevant ran-
dom distributions. In order to quantify such difference, we de-
cided to apply the Kolmogorov-Smirnov test (see, e.g., Press
et al. 1986) to each distribution. As is well known, the test is
based on the measurement of the maximum distance, D, be-
tween the cumulative distribution of the observational data and
the corresponding theoretical distribution. Such distributions
are shown in Fig. 6.
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Fig. 6. Cumulative distributions of the angles in Fig. 5, and the corre-
sponding random distributions.

Strictly speaking, the Kolmogorov-Smirnov test in not
applicable in our case, because it presupposes a set of
“unweighted” measurements of the observational quantity,
whereas our determinations are weighted as described in
Sect. 2. For a set of N unweighted (different) measurements, all
the “steps” of the cumulative distribution are the same (= 1/N).
The probability that the distribution of the measurements is
consistent with an assigned theoretical distribution obviously
depends both on D and on N, and, for a given D value, de-
creases strongly with increasing N.

In our case, we are forced to introduce an “effective num-
ber” of measurements, Neff . The choice Neff = 31 (the num-
ber of stars in the sample) would be correct if we had just
one model (with the same χ2 value) for each star: as this is
not the case, the value Neff = 31 is certainly an underesti-
mate. The choice Neff = 147 (the overall number of models)
would be correct if all the determinations had the same weight:
as many models are characterised by rather large χ2 values
(hence, rather small weights), Neff = 147 is certainly an overes-
timate. The most reasonable choice is something intermediate:
for instance, one could take the quadratic mean of the steps’
heights ∆i,

〈∆〉 =
[
1
n

n∑
i=1

∆2
i

]1/2

, (8)

Table 2. Results of the Kolmogorov-Smirnov test for each angle and
for different estimates of the number of measurements, Neff . The p’s
are the probabilities (ranging from 0 to 1) that the observed and ran-
dom distributions are consistent. p1 corresponds to Neff = 31, the num-
ber of stars in the sample. p2 corresponds to Neff = 96 for i, β, βQ, χ−;
90 for γQ; 91 for χ+: these are the nearest-integer approximations to
1/〈∆〉, where 〈∆〉 is given by Eq. (8). p3 corresponds to Neff = 147
for i, β, χ−; 146 for βQ; 134 for γQ; 137 for χ+: these are the num-
bers of models considered. The reason why this number is less than
147 for βQ, γQ and χ+ is that we ruled out those models where either
the “reference” semi-meridian or the point Q were poorly defined (cf.
Fig. 1: very small β, u1 and u2 lying almost in the geographic equator,
or nearly parallel to each other).

angle D p1 p2 p3

i 0.24 0.05 2 × 10−5 6 × 10−8

β 0.29 0.01 7 × 10−8 9 × 10−12

βQ 0.33 2 × 10−3 2 × 10−9 3 × 10−14

γQ 0.16 0.35 0.01 1 × 10−3

χ− 0.12 0.69 0.09 0.02
χ+ 0.12 0.72 0.13 0.03

where n is the number of models considered, and set Neff =

1/〈∆〉.
Table 2 shows the test results for the distributions of the six

angles, according to different choices of Neff . It is clear that all
the distributions are non-random, and that the largest discrep-
ancies concern βQ, β, and i.

One might suspect that deviations from the random distri-
bution like those of Figs. 5 and 6 could be an artifact due to the
inversion algorithm. Because of the large number of parame-
ters and the ensuing complexity of the χ2 hypersurface, noisy
observational data might generate some unexpected system-
atic effect. To check this point we performed extensive numer-
ical simulations, by presenting to the fitting code synthetic and
noisy data for a variety of dipole plus quadrupole, randomly
oriented models. Such calculations showed that non-random
distributions like those of Figs. 5 and 6 can by no means be
ascribed to systematic effects of the inversion code.

Let us consider the inclination angle i – the only “non-
magnetic” angle. Its distribution clearly shows an excess of
small values. It should be noticed, however, that for most of
the stars (22 out of 31) the mean field modulus was actually
detected: this means that the sample is certainly affected by
a selection effect which tends to favour small i values, since
positive detections of that quantity require small equatorial ve-
locity, ve sin i. In fact, the distribution of i for the 9 remaining
stars (Fig. 7 left) is very different from that in Fig. 5, and much
closer to the random distribution: for Neff = 9, 14, and 16 (cor-
responding to the criteria adopted in Table 2 for p1, p2, and p3,
respectively) the probability p resulting from the Kolmogorov-
Smirnov test is 0.91, 0.73, and 0.65, respectively.

Following another approach, we might consider the distri-
bution of i for all stars with sufficiently small rotational velocity
(period P > P0): such sample should likely be unaffected by se-
lection effects. Setting P0 ' 40 days – actually, any number of
days between 35 and 48 – we get a sub-sample of 10 stars (none
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Fig. 7. Distribution of the inclination angle i for the 9 stars with no 〈B〉
observations (left), and for the 10 stars with rotational period larger
than 40 days (right).

of which pertaining to the former 9-star sample) leading to the
distribution of Fig. 7, right. For Neff = 10, 30, and 37, corre-
sponding to the same criteria as above, we have p = 0.82, 0.21,
and 0.12, respectively. This probability decreases strongly with
decreasing P0.

On the whole, the difference from the random distribution
looks rather reduced, though some excess of small i values re-
mains. This is not fully understood. It could be due either to
inadequacy of the dipole plus quadrupole model, or to a weak,
but real intrinsic non-randomness of the star sample, although
it should be noted that this latter phenomenon does not have an
obvious physical justification. We recall that – contrary to ax-
isymmetric models – our magnetic model involves no degener-
acy between the angles i and β, the only “physical” degeneracy
being that of Eq. (2). Thus a randomization – so to say – of the
i distribution at expense of the β distribution is not allowed in
our case (see Landstreet & Mathys 2000).

Let us now turn our attention to the “magnetic” parameters
of the model. Since the magnetic structure may plausibly be
connected with the star’s rotation, we looked for possible cor-
relations between the magnetic parameters and the rotational
period P.

Figure 8 shows the dipole amplitude Bd (upper panel) and
the ratio of quadrupole to dipole amplitude Bq/Bd (lower panel)
as functions of P. The figure refers to all the 147 models as-
sociated with the 31 stars of our sample. Both quantities, and
particularly the latter, decrease on average with increasing P:
faster rotators seem to be characterised by stronger and pre-
dominantly quadrupolar fields.

Similarly, Fig. 9 shows the phase-averaged mean field mod-
ulus as a function of P. The number of dots is much smaller
than in Fig. 8 because – as already noted – the different models
of a given star yield almost the same 〈B〉 value. Consistently
with the data in Fig. 8, 〈B〉 tends to decrease with increasing P.

As far as the magnetic geometry is concerned, consider
first the quadrupolar component. The first step is to find the
location of the point Q on the stellar surface (cf. Fig. 1). The
plot in Fig. 10 shows the location of Q in the (βQ, γQ) plane
for all models2. It turns out that the dots tend to cluster round
βQ ' 90◦, and, to a smaller extent, round γQ ' 0◦ and γQ ' 90◦:
such characteristics were already apparent from the histograms

2 Owing to the symmetry properties of Eqs. (2) and (3), the plot can
be restricted to 1/4 of the whole spherical surface.

Fig. 8. Dipole amplitude (upper panel) and ratio of quadrupole to
dipole amplitude (lower panel) versus rotational period. P is expressed
in days, Bd in kG. The dots’ area is proportional to the weight ρ jk of
Eq. (6).

Fig. 9. The phase-averaged mean field modulus (in kG) against the
rotational period (in days).

of Fig. 5. But the most interesting aspect arises when connect-
ing the dots corresponding to all the models of a given star:
one finds that, for a number of stars, the location of the point Q
lies within a small region around the point A ≡ (90◦, 90◦).
There are seven stars of this kind, shown in the lower panel
of Fig. 10. For three of them – HD 96446, HD 119419, and
HD 147010, labelled in the figure as No. 14, 17, and 24, re-
spectively – the location of the point Q is univocal (one mini-
mum in the χ2 hypersurface), while for the others – HD 70331,
HD 137509, HD 208217 and HD 318107 (labelled in the figure
with 8, 20, 31, and 33, respectively) – there are several possible
locations. In any case, for all of them the point Q lies within a
small spherical cap, centred at the point A and having a width
d ' 22◦ (which amounts to about 7% of the spherical surface)
– see Fig. 11. These stars will be referred to in the following as
“class I”.
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Fig. 10. Upper panel: the position of the point Q in the (βQ, γQ) plane
for each of the fitting models. Angles are expressed in degrees. The
γQ axis spans a 180◦ interval centred at 45◦ in order to show clearly
the regions of interest (cf. Fig. 11): two spherical caps with widths
d = 22◦ and d = 84◦ centred at the point A ≡ (90◦, 90◦). The dots’
area is proportional to ρ jk defined in Eq. (6). Full dots indicate “class I”
and “class II” stars, labelled according to their reference number in
Table 1. Class II stars HD 2453, HD 12288, and HD 187474 (la-
belled as 1, 2, and 27) have five, one, and two models, respectively.
Lower panel: an enlargement of the class I region, showing the con-
nections between models of the same star. Class I stars are HD 70331,
HD 96446, HD 119419, HD 137509, HD 147010, HD 208217, and
HD 318107 (indicated in the figure as No. 8, 14, 17, 20, 24, 31,
and 33).

Fig. 11. Location of the quadrupole pole Q on the stellar surface for
“class I” and “class II” stars.

Fig. 12. The angular distance d (in degrees) of the point Q from the
point A ≡ (90◦, 90◦) as a function of the rotational period (in days),
for class I (lower left) and class II (upper right) stars. Dots’ area is
proportional to ρ jk of Eq. (6).

Similarly, we found that for 3 other stars – HD 2453,
HD 12288, and HD 187474 (No. 1, 2, and 27, respectively)
– the point Q lies within a small “ring” between d = 84◦ and
d = 90◦, i.e., a 6◦ ring around the meridian containing the stel-
lar rotation axis and the dipole axis (about 10% of the spherical
surface). These stars, denoted as “class II” in the following, are
shown in the upper panel of Fig. 10.

For the remaining stars, the location of the point Q is usu-
ally scattered throughout the (βQ, γQ) plane according to the
different models, so that no precise characterisation is possible.

It should be noticed that, in terms of the angles β1, β2, γ1,
γ2, class I stars are characterised by the property γ1 = 0◦ or
180◦ and γ2 = 0◦ or 180◦ (the unit vectors u1 and u2 lie in the
plane of the rotation axis and dipole axis). It follows that the
degeneracy of Eq. (2) does not apply to such stars: this can be
formally seen by combining Eqs. (2) and (4).

Let us now examine whether any correlation exists between
the location of the point Q on the stellar surface and the ro-
tational period. If we restrict attention to class I and class II
stars (for which such location is more precise), we obtain the
remarkable result shown in Fig. 12: there is striking evidence
that class I stars are short-period, and class II stars are long-
period. A similar result was anticipated by Bagnulo (2001).

The idea of a general “law”, valid for all the stars in
our sample, according to which the angular distance d of the
point Q from the point A ≡ (90◦, 90◦) is an increasing func-
tion of the rotational period, looks really tempting. However,
we just observed that for a star other than class I or II, the lo-
cations of the point Q associated with the various models are
generally far apart in the (βQ, γQ) plane – which entails scat-
tered values (i.e., both large and small) for d. In fact, when d is
plotted against P for all models of all the stars in the sample,
we obtain the results of Fig. 13, which look rather ambiguous.
In particular, some long-period stars (especially HD 116458,
HD 188041, HD 51684, and HD 93507 – No. 16, 28, 5, and
12, respectively) have both large-d and small-d models. (Note
that in the case of HD 93507, the determination of the mag-
netic observables – hence the modelling – is hampered by the
fact that the distribution of Fe over the stellar surface is rather
strongly inhomogeneous.)
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Fig. 13. Same as Fig. 12 for all models of all the stars in the sample.
The vertical lines connect the dots corresponding to the different mod-
els of stars HD 116458, HD 188041, HD 51684, and HD 93507, that
are labelled in the figure as 16, 28, 5, and 12, respectively.

Fig. 14. Same as Fig. 13 for the best models of all the stars in the sam-
ple. Full dots are class I and class II stars. Dots’ area is proportional
to the weight ρ j of Eq. (5), which is more appropriate in this context.

However, if we restrict attention to the best model (asso-
ciated with the absolute χ2 minimum) of each of the 31 stars,
we obtain the plot in Fig. 14. It really seems that the data of
the whole sample support (approximately) the “law” mentioned
above.

Finally, one could suspect that a relationship exists be-
tween d and 〈B〉, since both quantities are somewhat related
to the rotation period. However, inspection to the plot of d vs.
〈B〉 did not reveal any obvious correlation.

In order to characterise the quadrupole orientation, one
needs to know – beside the location of the point Q – the di-
rections of the unit vectors u1 and u2 in their plane, i.e., the
angles χ1 and χ2 or, equivalently, χ− and χ+. Contrary to Q,
those directions proved to be basically uncorrelated with the
rotational period: this is obvious even if we restrict the analy-
sis to the best models, as shown in Fig. 15. The only “anoma-
lies” of χ− and χ+ are those appearing in Fig. 5: some excess
of χ− values around 90◦, and of χ+ values around 0◦ and 90◦.
Though the discrepancies from the relevant random distribu-
tions are less marked than for the other angles (cf. Table 2), it
is interesting to observe that the χ− distribution tends to rule
out linear quadrupole models (u1 parallel or antiparallel to u2,
which entails χ− = 0◦ or 180◦).

Next we consider the dipole orientation. Figure 16 shows
the angle β as a function of the rotational period. The up-
per panel refers to all models of all the 31 stars, and shows

Fig. 15. The angles χ− (upper panel) and χ+ (lower panel) – expressed
in degrees – against the rotational period in days. Only the best-fit val-
ues are shown. Full/open dots and dots’ area have the same meaning
as in Fig. 14.

a deficiency of large β values for long period stars. If we confine
attention to the best-fit models (lower panel), we better see that
β tends to decrease with increasing rotational period. This is in
agreement with the main result of Landstreet & Mathys (2000):
β is usually small for slow rotators and large for fast rotators.
Such agreement is especially significant for long-period stars,
where the quadrupolar component is less important (see Fig. 8,
lower panel), so that the orientation of the magnetic structure
is dominated by the dipole orientation. A notable exception to
this general trend is represented by HD 187474. This star has
a rotation period of 2364 d (the longest in the g sample), and
the best-model predicts a tilt angle between dipole axis and ro-
tation axis of 80◦. A detailed study of its chemical peculiarity
has been recently presented by Strasser et al. (2001).

On the whole, the results above show the existence of some
correlation between the magnetic structure of the stars of our
sample and the rotational period.

4. Analysis based on 3 magnetic observables

As recalled at the end of Sect. 2, the consistency of 〈B2+B2
z 〉1/2

and 〈B〉 observations is not completely ascertained. For this
reason we repeated the analysis of Sect. 3 by neglecting either
kind of measurements. However, such “partial” analyses imply
that some stars “go out” of the sample, so that the “global”
sample of Sect. 3 and the two partial samples are not directly
comparable.

In fact, in Paper III we determined the minimum combina-
tions of magnetic observables which allow a dipole plus (non
linear) quadrupole configuration to be recovered. In particular,
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Fig. 16. The angle β (in degrees) versus the rotational period (in days),
for all models (upper panel) and for best-fit models (lower panel).
Dot’s area is proportional to ρ jk and to ρ j in the upper and lower panel,
respectively. Full dots are class I and class II stars.

Table 1 of that paper shows that the configuration can be recov-
ered from (a sufficient number of) 〈Bz〉 and 〈B2 +B2

z 〉1/2 obser-
vations, as well as from 〈Bz〉 and 〈B〉 observations; whereas it
cannot be recovered either from 〈Bz〉 alone, or from 〈Bz〉 and
ve sin i 〈dBz〉. Bearing in mind these results, we see that the sub-
samples for our partial analyses contain 25 stars each.

These are shown in the last two columns of Table 1, where
the label “p1” means that the fit is based on all available ob-
servations except 〈B2 +B2

z 〉1/2, while the label “p2” means that
it is based on all available observations except 〈B〉. It should
be noticed that stars HD 75445 and HD 335238, which in prin-
ciple pertain to sub-sample p2 as for both of them there are
measurements of 〈Bz〉, ve sin i 〈dBz〉, and 〈B2 + B2

z 〉1/2, are ac-
tually excluded from p2 because of the small number of obser-
vations (9 in all), which renders the fit impossible. On the other
hand, stars HD 61468, HD 94660, and HD 142070, which in
the “global” investigation give rise to low-quality fits (χ2

min > 8)
so that they were excluded from the statistical analysis, in the
“partial” investigations give rise to much better fits, thus they
have been included in the analysis.

If we restricted the study to the stars common to all three
samples g, p1, and p2, we would be left with only 13 objects –
too small a number for a statistical analysis. On the other hand,
a direct comparison of samples g and p1, or g and p2, is not
very meaningful because the fit of several of the common stars
is identical by definition: for instance, this is the case for the
g-fit and the p1-fit of star HD 12288, because for that star there
are no observations of 〈B2 + B2

z 〉1/2, hence either fit is in fact
the same fit (based on 〈Bz〉 and 〈B〉 observations).

Fig. 17. Same as Fig. 2 for the stars of samples p1 (upper panels)
and p2 (lower panels). Either sample contains 25 stars.

For these reasons, the correct attitude is to forget compar-
isons and to look at the “global” and “partial” analyses as sep-
arate investigations. The final goal is to see whether the overall
picture of magnetic CP stars arising from analyses of different
kind (in the sense specified above) is the same or not; where
by “overall picture” we intend the presence of recurrent fea-
tures and/or correlations among the parameters of the magnetic
model.

Columns p1 and p2 of Table 1 show the value of the re-
duced χ2 for the best-fit model of the 25 stars pertaining to
either sample. Such data is also shown in the left panels of
Fig. 17. The two distributions are similar to that of the g-case
(cf. Fig. 2 left), though somewhat displaced towards smaller
values – which reflects the difficulties encountered in fitting to-
gether 〈B2 + B2

z 〉1/2 and 〈B〉 observations. In the right panels
of Fig. 17 we show the distributions of the reduced χ2 for all
models (absolute and relative χ2 minima): on the whole, there
are 140 models for the p1-case (7 of which with χ2 > 14)
and 60 models for the p2-case (20 of which with χ2 > 14).
These figures show that the average number of models per star
– i.e., the number of minima in the χ2 hypersurface – increases
strongly when 〈B〉 observations are included: from 2.4 for the
p2-case to 4.9 for the g-case and 5.6 for the p1-case. Thus in-
clusion of 〈B〉 observations renders the χ2 hypersurface much
more complex: this is possibly due to a stronger degeneracy
of 〈B〉 compared to the other magnetic observables (different
dipole plus quadrupole configurations leading to similar 〈B〉
curves). As in Sect. 3, we restricted the statistical analysis to
the models with χ2 < 8.

Figure 18 shows the distributions of the dipole amplitude,
and of the ratio between quadrupole and dipole amplitude, for
the two “partial” samples, while Fig. 19 refers to the phase-
averaged mean field modulus. Such distributions are in fact
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Fig. 18. Same as Fig. 3 for samples p1 (upper panels) and p2 (lower
panels).

quite similar to those of Sect. 3 (cf. Figs. 3 and 4). Note that
Babcock’s star does not belong to the p2-sample (see Table 1).

It is interesting to compare our Figs. 4 and 19 with the his-
togram showing the observed phase-averaged magnetic field
modulus presented in Fig. 47 of Mathys et al. (1997). We re-
call that Fig. 4 is based on the modelling results of all avail-
able magnetic observables; the left panel of Fig. 19 is obtained
from the results of the analysis of all quantities except the mean
quadratic field; the right panel of Fig. 19 from results of the
analysis of all quantities except the mean field modulus; Fig. 47
of Mathys et al. (1997) is purely based on the observations, and
includes stars that have not been monitored throughout the ro-
tation cycle. A similar overall picture emerges from all these
figures. A certain degree of consistency is to be expected for
the following reason: the mean field modulus is generally a
quantity that does not change much over the rotation phase,
and even few observed points, or a very rough model are suf-
ficient to characterise the 〈B〉 curve with good approximation.
We note in particular that all figures show a definite lower limit
in the 〈B〉 distribution at about 3 kG – this characteristic has
been already discussed in Mathys et al. (1997), and in Hubrig
et al. (2000). It is interesting to note that the same result is here
recovered also for stars with no magnetically split lines, though
still with relatively low ve sin i values. Notably the same sharp
cut-off is found from the modelling of 〈Bz〉, ve sin i 〈dBz〉, and
〈B2 + B2

z 〉1/2 (see right panel of Fig. 19).
The distributions of the angles i, β, βQ, γQ, χ−, χ+ for the p1

and p2 cases are shown in Figs. 20 and 21, respectively. It ap-
pears that the deviations from the relevant random distributions
are basically the same as in the g-case (cf. Fig. 5). These in-
clude an excess of small β values and large βQ values, and, to
a smaller extent, of γQ and χ− values around 90◦. The peaks of

Fig. 19. Same as Fig. 4 for p1 (left) and p2 (right).

Fig. 20. Same as Fig. 5 for the p1-case.

the “barycentric angle” χ+ around 0◦ and 90◦ are still visible,
though the latter is somewhat shifted in the p2-case.

As far as the inclination angle i is concerned, it should be
borne in mind that – contrary to the g-case – 〈B〉 was detected
for all stars of the p1-sample. The selection effect is therefore
larger than in the g-case, so that the excess of small i values
is even more prominent (see Fig. 20). On the other hand, the
p2-sample contains a larger percentage of long-period stars
(say, with P > 40 days) with respect to the g-sample, which
explains why the excess of small i values is less prominent (see
Fig. 21).
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Fig. 21. Same as Fig. 5 for the p2-case.

Consider next the correlations with the rotational period.
Concerning the field strength, the behaviour of the dipole and
quadrupole amplitudes is quite similar to the g-case; we show
only the phase-averaged mean field modulus (Fig. 22), which
tends to decrease with increasing P as in Fig. 9.

As to the quadrupole orientation, we repeated for the p1
and p2 cases the same analysis on the location of the point Q
on the spherical surface described in Sect. 3 (see Fig. 10). For
both cases, we found a number of “class I” and “class II” stars
(cf. Fig. 11), and we plotted the angular distance d between
points Q and A against the rotational period (cf. Figs. 12 to 14).
The final results (based on the best fit of each star) are shown
in Fig. 23.

Altogether, the p1-case yields a picture similar to the g-case
(see Fig. 14), with the exception of star HD 94660 (absent in
the g-sample) – which is the longest-period star of all the 34 ob-
jects and which is characterised by a small d value – and pos-
sibly of HD 116458.

By contrast, the p2-case yields a very different picture,
which tends to deny the existence of a correlation between d
and P. In particular, it is worth noticing the behaviour of stars
HD 116458, HD 93507, and HD 51684. As shown in Fig. 13,
in the g-case they have both large-d and small-d models, but
the best-fit ones are the former (see Fig. 14). In the p2-case, on
the contrary, the best-fit models of all three stars correspond to

Fig. 22. Same as Fig. 9 for cases p1 (upper panel) and p2 (lower
panel). The larger dots’ area in the lower panel is just a consequence
of the smaller average number of models per star in the p2-case.

Fig. 23. Same as Fig. 14 for cases p1 (upper panel) and p2 (lower
panel). Full dots represent class I and class II stars, defined as in
Sect. 3. Some stars are labelled by their reference number of Table 1.

small d values. On the other side, it should also be noticed that
the short-period star HD 142070 (absent in the g-case) proves
to be a class I object both in the p1 and the p2 case, and that the
long-period star HD 61468 (also absent in the g-case) proves to
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Fig. 24. Same as the lower panel of Fig. 16 for cases p1 (upper panel)
and p2 (lower panel).

be of class II in the p1-case and nearly of class II in the p2-case,
in accordance with the tentative “law” of Sect. 3.

On the whole, the existence of some correlation between d
and P (small-d models for short-period stars, large-d models
for long-period ones) seems somewhat related to the reliability
of 〈B2 + B2

z 〉1/2 observations, being more likely if they were
not fully reliable, and vice versa. In any case, there is a con-
siderable excess of models with βQ ' 90◦ and/or γQ ' 90◦:
this comes out clearly from all three samples (see Figs. 5, 20,
and 21).

As for the angles χ− and χ+, they seem to be uncorrelated
– as in the g-case – with the rotational period. For the angle β,
characterising the dipole orientation, we found the results pre-
sented in Fig. 24. They roughly confirm, though with a larger
scattering, the behaviour deduced from the g-case (cf. Fig. 16):
large β values for short-period stars, small β values for long-
period ones.

5. Discussion and conclusions

We have carried out a study of the magnetic morphologies of
some thirty CP stars, by interpreting the observations of mean
longitudinal field, crossover, mean quadratic field, and mean
field modulus in terms of a magnetic dipole plus non-linear
quadrupole model.

In most of the cases we could not obtain a unique model,
even for those stars whose magnetic geometry seems strongly
constrained by the observations. This is related to the rela-
tively large observational errors, and possibly to the fact that
the actual magnetic geometry of CP stars is too complex to
be described in terms of a second-order multipolar expansion.
We thus decided to follow an approach that gives a limited

importance to the best-model of the individual stars, search-
ing instead for characteristics that emerge from the whole set
of models (corresponding to the absolute and relative minima
of the χ2 hypersurface), and weighting the model parameters
with the χ2 value.

Furthermore, we had to face the problem of the inconsis-
tency of mean field modulus and mean quadratic field mea-
surements: in fact, evidence exists that for many stars, either
the former are systematically slightly overestimated, or the lat-
ter are systematically slightly underestimated. To deal with this
problem, we repeated our analysis considering different obser-
vational datasets. We first performed a modelling considering
all the kinds of measurement that were available for each in-
dividual star. Then we repeated the same analysis neglecting
the observations of mean quadratic field; finally, we performed
the analysis considering all available data but the observations
of mean field modulus. Numerical simulations performed by
Bagnulo, Mathys, & Stift (in preparation) suggest that the tech-
nique used to determine the mean quadratic field tends to un-
derestimate the measurement. In addition to these numerical
simulations, another argument supports the view that measure-
ments of the mean field modulus are likely more reliable than
determinations of the mean quadratic field. Field modulus mea-
surements rely directly on the basic physics of the Zeeman ef-
fect and, for simple lines such as the Fe II λ 6149 magnetic
doublet, are for all practical purposes independent of radia-
tive transfer effects (Mathys 1989, Sect. 4.2.1), in contrast to
quadratic field determinations, which involve fairly gross ap-
proximations of the effects of the radiative transfer in the stellar
atmosphere. Accordingly, one could be tempted to give more
weight to the results obtained neglecting quadratic field mea-
surements. We nevertheless decided to accept as reliable only
those results that were recovered in all three kinds of analysis.
These are as follows.
i) The dipolar strength is usually comprised in the inter-
val 3–20 kG, with a peak at something less than 10 kG. The
strength of the quadrupolar component is the same as, or larger
than the dipole strength.
ii) The dipole and quadrupole amplitude, as well as the ratio of
quadrupole to dipole amplitude, tends to decrease with increas-
ing rotational period. Consistently, the phase-averaged mean
field modulus, an indicator of the typical field strength, also
tends to decrease with increasing P.
iii) The inclination of the dipole axis to the rotation axis is
usually large for short-period stars, and small for long-period
ones. This is in accordance with a recent result obtained by
Landstreet & Mathys (2000), who found a similar result for the
magnetic axis of the axisymmetric model that they adopted in
their best-fit technique.
iv) For several stars, the plane containing the two unit vec-
tors that characterise the quadrupole is almost coincident with
the plane containing the stellar rotation axis and the dipole
axis. These are basically short-period stars (approximately,
P < 10 days). Long-period stars seem to be preferentially char-
acterised by a quadrupole orientation such that the planes just
mentioned are perpendicular. There is also some indication of a
continuous transition between the two classes of stars with in-
creasing rotational period, but the existence of such a “law” is
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partly related to the question of the reliability of mean quadratic
field observations. This result is not recovered by the analysis
performed neglecting the observations of mean field modulus
(thus when quadratic field measurements have a larger weight).

It should be noted that the results of this analysis pertain to
a sample of relatively slow rotating stars; many of them are in
fact very long-period stars.

It is an unanswered question whether the magnetic field of
CP stars is the relic of an interstellar field that became stronger
and stronger as the primordial nebula collapsed into a star
(“freezing” the field flux in a smaller and smaller plasma sur-
face), or whether the field is at least in part dynamo generated.
The results of our and previous studies show that there is some
correlation between magnetic structure and rotational period,
which encourages one to think in terms of the dynamo theory.
In reality, it is not obvious to determine what is the consequence
of what. For instance, Stȩpień & Landstreet (2002) have ar-
gued that the interaction of the magnetic field and a circumstel-
lar disk before the star reaches the Zero-Age-Main-Sequence
tends to slow-down preferentially those stars that have mag-
netic field vectors tilted at a small angle with respect to the rota-
tion axis (thus presumably with the field lines perpendicular to
the disk). Therefore, the long rotational period would be a con-
sequence of the magnetic structure, and the magnetic field itself
could well be a fossil relic. On the other hand, finding within
the framework of a fossil field an explanation for the statisti-
cal properties of the quadrupolar component that were found
in this work may be less easy. In any case we still need firmer
conclusions about the geometrical structures of magnetic CP
stars, that could come for instance from extensive applications
of Zeeman Doppler Imaging. At the same time, there is a strong
need for a theory explaining the origin of the magnetic fields in
A and B type stars capable of leading to predictions about the
geometrical structures to be compared with the modelling
results.
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