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1. Introduction

The XNS code solves for axisymmetric equilibria of polytropic magnetized and/or rotating Neutron
Stars (NSs) using the extended conformally flat condition (XCFC) for the metric, in spherical coordinates.
This is based on the metric module and the routines developed for the X-ECHO code for GRMHD in dynam-
ical spacetimes (Bucciantini & Del Zanna 2011), which in turn is an upgrade of the Eulerian conservative
high-order code (ECHO Del Zanna et al. 2007) for GRMHD in a static background metric (the so-called
Cowling approximation). Like ECHO and X-ECHO, also XNS is written in the Fortran90 programming
language. The reader is referred to the above cited paper for full derivation of the GRMHD equations, and
for the full description of the XCFC solvers. The following guide is based on the papers Pili et al. (2014); ?,
2017), where the equations describing the approach for magnetized models is fully presented. The various
quantities in this guide are referred to the one used and defined in this latter work.

If you use this software please reference the following papers:
Bucciantini N., Del Zanna L., 2011, A&A, 528, A101
Pili A.G., Bucciantini N. & Del Zanna L., 2017, MNRAS, 470, 2469
Pili A.G., Bucciantini N. & Del Zanna L., 2015, MNRAS, 447, 2821
Pili A.G., Bucciantini N. & Del Zanna L., 2014, MNRAS, 439, 3541.
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2. Description of the XNS package

In the following we will list and describe the user parameters, arrays, files, subroutines, and outputs of
the XNS package.

2.1. User parameters

The input parameters that the user might want to change are all set in the module system inside the
file SYSTEM.f90. There are other parameters in other parts of the code that deal with specific routines (root
finding, convergence etc...), but those should not need to be changed. Here is a list of the parameters of the
model as they appear in the module system:

• NVALUE – the maximum number of loops employable by the Newton-Raphson scheme in the search
for a equilibrium solution, having a target value for a desired quantity (central density, total mass,
etc..) by the program XNS. Usually convergence is reached within about 10 steps, unless the NS is
strongly distorted (fast rotation, and/or strong magnetic field). The default value is set to 100.

• MAXLOOP – the maximum number of loops employable in the search for a converged equilibrium
solution by the subroutine XNSMAIN. Usually convergence is reached within the first 100 steps,
unless the NS is strongly distorted (fast rotation, and/or strong magnetic field). The default value is
set to 1000.

• NR – the number of radial grid points (the default setting is for a uniform grid). The radial grid is
defined from r = RMIN and r = RMAX.

• NTH – the number of angular grid points (the default setting is for a uniform grid). The angular grid is
always defined between θ = 0 and θ = π.

• RMIN – the lower boundary in the radial direction. It must be always set to 0, since the metric solver
requires a compact domain and has been implemented with specific boundary conditions for RMIN = 0.

• RMAX – the maximum radius of the computational domain. This can be arbitrarily chosen. However,
one needs to guarantee that the NS is properly resolved over a sufficient number of grid points (50-
100), so this parameter and NR should be chosen consistently. In particular, the condition RMAX>
2rTOV must hold, where rTOV is the NS radius of the initial TOV guess. This is because the TOV
solver is designed to converge when the ADM masses measured at RMAX and RMAX/2 (hence it must
be outside the NS) coincide within a given tolerance. If not the code will halt with a warning.

• STRETCH – a logical flag that control whether the grid is stretched or not. If .TRUE. the radial grid
is regular up to RREG with NRREG grid points and it is stretched from RREG to RMAX with NR-NRREG
points. The stretching factor STRR is determined by the code determined by the code consistently with
the choices for NR, NRREG,RMAX and RREG. See also Pili et al. (2015) for details.
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• NRREG – number of grid points for the regular grid if STRETCH=.TRUE., otherwise it can be safely set
to zero.

• RREG – maximum radius of the regular grid. It is unused if STRETCH=.FALSE..

• VERBOSE – a logical flag. Setting VERBOSE=.true. forces the code to output on screen all the INFOs
related to the various steps done by each subroutine (to be used only for debugging or checks). Oth-
erwise setting VERBOSE=.false. the output on screen will be produced only at the end. The latter is
the default option.

• WRT – a logical flag. Setting WRT=.true. forces the code and each subroutine to write output files
at every step or substep, otherwise setting WRT=.false. will prevent IO writing. The latter is the
default option.

• WRTF – a logical flag. Setting WRTF=.true. override WRT for the final step, and allow to write all the
files related to the final configuration. Setting WRTF=.false. will prevent IO writing.

• CHUP – a logical flag. Setting CHUP=.true. allows (subject to WRT, WRTF) to write the files contain-
ing the results of the metric solver and primitive solver XShiftphi.dat, Conformal.dat, Primitive.dat,
Primitive_mag.dat, Shiftphi.dat, Lapse.dat, Source.dat, TOVini.dat, Rhovec.dat. Set-
ting CHUP=.false. will prevent from writing these files. The latter is the default option, unless one
wishes to perform a check of the metric or primitive solvers.

• OMG – the value of the angular velocity at the center Ωc.

• A2VALUE – the value of A2. This is needed only for differentially rotating models, otherwise it should
be set to 0.

• DIFFERENTIAL – a logical flag that states whether the model is differentially rotating or not. Setting it
to .false. implies uniform rotation, with Ω = OMG. Setting it to .true. implies differential rotation.
In this case, a value of A2VALUE must be specified.

• IMAG – a logical flag that states whether the model is magnetized or not. Setting it to .false. implies
the non magnetized case. Setting it to .true. implies the presence of a magnetic field. In the latter
case, values of parameters for the magnetic model must be specified.

• ITOR – a logical flag that must be set true only for purely toroidal configurations.

• IPOL – a logical flag that must be set true only for purely poloidal configurations.

• ITWT – a logical flag that must be set true only for mixed Twisted Torus configurations.

• RHOINI – the central density for the starting guess. WARNING: this is not the central density of the
converged model, it is just its value for the starting guess. By default XNS will serch for a solution in
the range 0.8-1.2RHOINI. If the desired solution is outside this range, XNS will output a warning, and
stop.
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• QUOC – the quantity of interest to which the model must converge [0 for a given central density, 1 for
a given gravitational mass, 2 for a given barionic mass].

• QUCONV – the value of the quantity of interest to which we want a model to converge. For ex-
ample if one wants a model with central density 1.28 × 10−3 (in geometrized units) set: QUOC=0,
QUCONV=1.28E−3.

• K1 – the polytropic coefficient K of the EoS. The code uses a polytropic EoS. The value K1=100 is
for the standard case used for many tests of NS stability and evolution in the literature (see also the
parameter below).

• GAMMA – the adiabatic index γ = 1 + 1/n of the polytropic EoS, where n is the polytropic index. The
value GAMMA=2 (n = 1) is for the standard case used for many tests of NS stability and evolution in
the literature (see also the parameter above).

• BCOEF – the value of Km in the magnetic polytropic law for the case of purely toroidal field. Never
used when IMAG=.false. or ITOR=.false., though it is better set to 0 in this case.

• MAGIND – the value of m in the magnetic polytropic law for the case of purely toroidal field. It must be
> 1, otherwise the magnetic energy diverges on the polar axis. It is never used when IMAG=.false.
or ITOR=.false..

• KBPOL – the value of Kpol in the magnetic law for the case of purely poloidal field. Never used when
IMAG=.false. or IPOL=.false., though it is better set to 0 in this case.

• CSI – the value of the parameter ξ (non linear current term) in the magnetic polytropic law for the
case of purely poloidal field. It is never used when IMAG=.false. or IPOL=.false..

• CTP – if set to .FALSE. the code avoid to use conservative to primitive routines. This flag is effective
only with IPOL=.TRUE..

• QNULL – logical flag that regulates the global net charge of a rotating star with poloidal magnetic field.
If QNULL=.TRUE. the code searches for a globally uncharged star, otherwise it minimizes the electric
field at the stellar pole.

• KBTT – the value of of Kpol in the magnetic law for the case of mixed Twisted Torus configuration.
Never used when IMAG=.false. or ITWT=.false., though it is better set to 0 in this case.

• ATWT – the value of a in the magnetic law for the case of mixed Twisted Torus configuration. Never
used when IMAG=.false. or ITWT=.false., though it is better set to 0 in this case.

• ZETA – the value of ζ in the magnetic law for the case of mixed Twisted Torus configuration.

• CUT – the value of λ in the magnetic law for twisted magnetosphere models. It regulates the extension
of the twist. If λ = 1 standard Twisted Torus models are recovered.
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• CONV – a convergence parameter for the Newton-Raphson scheme in XNS. It is given in relative terms
(beware that the code accuracy is ∼ 10−3).

• REQMAX – the maximum radius beyond which any NS model will be artificially truncated. This must
be set ≥ of the shedding mass limit. Sometimes, when working with configurations close to mass
shedding, during the convergence loop the code might get unbounded solutions or fail to converge. To
avoid this, setting a value for REQMAX will force the solution to be truncated. The value REQMAX= 11.6
is chosen for the BU series (Stergioulas et al. 2004), provided with the package.

• QFACTOR – a damping factor of the convergence loop for solving the Bernoulli Eq.n, used in HYDROEQ.f90.
At the end of each sub-loop of the convergence scheme, a new set of equilibrium fluid variables is
computed. Setting QFACTOR=1 implies that these will be used, while setting QFACTOR=0 means that
the old variables Vold will be used (the code will never converge in this case!). A value 0 < QF < 1
implies that at the beginning of each loop a combination of new and old variables will be used, in the
form

V = QFVnew + (1 − QF)Vold.

Using a value less than 1 tends to give slower but more stable convergence. Values QFACTOR < 0.5
are to be used only for pathological cases where the convergence is very slow or when the code fails
to converge (i.e. rotating models on the unstable branch of NS mass-radius curve).

• QAPHI – a damping factor of the convergence loop for solving the Grad-Shafranov or the Maxwell-
Ampère equation. Analogous to QFACTOR but for the φ-component of the 4-potential.

• EPS – a tolerance value. It is used in several subroutines and must be a small value. This should not
need to be changed.

• MLS – number of spherical harmonics (Legendre polynomials) for spectral decomposition in θ (num-
bered from 0 to MLS). This should be < NTH. In 1D (NTH=1) it must be set to 0.

• NGQ – the number of interpolation points for the Gauss quadrature, needed to compute the integrals
over the polar direction of the source terms in the spherical harmonics decomposition. Used by all the
2D elliptical PDE solvers. It must be NGQ ≤ NTH. In 1D (NTH=1) it must be set to 1.

• MLSL – number of spherical harmonics used to solve the Laplace equation as described in Pili et al.
(2017). This parameter is relevant only in the cases of rotating and poloidal magnetized star. It is set
to 10 by default.

• TOLCONV – the convergence tolerance for the iterative solution of the PDEs for the conformal factor ψ
and the lapse α.
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2.2. Arrays

The module system inside the file SYSTEMXNS.f90 also contains the definitions of some arrays that
are used within the code and shared by many subroutines. We briefly describe some of them here so that the
user can have some idea of what represents what. Other arrays that are specific only to certain subroutines
are defined locally and are not discussed here. Notice that some arrays related to the poloidal components
of the velocity, shift vector, or auxiliary vectors are always zero but still defined in XNS, though related
routines are never called. This is because XNS shares the same metric solver as the full X-ECHO code.

• R,DR – 1D arrays that store the location of the radial points, and the radial increments.

• TH,DTH,XX – 1D arrays that store the location of the angular points, the angular increments, and the
cosine of the angle.

• PSI,PSL,PSS,PSSR,PSST – 2D arrays of metric terms, respectively ψ, αψ, Xφ, Xr, Xθ. We have
either Xi ≡ W i, or Xi ≡ βi, depending on the step of the metric solver.

• RHOSRC,ESRC,PSRC,VPHI,VR,VTH,BPHI,SSS – 2D arrays, respectively ρ, ρh ≡ ρ(1 + ε) + p, p, vφ,
vr, vθ, Bφ, S , needed for the source terms.

• USRC,DSRC,S3SRC,S1SRC,S2SRC – 2D arrays containing the U conservative variables needed for
the source terms, respectively Ê, D̂, Ŝ φ, Ŝ r, Ŝ θ, all multiplied by f 1/2 = r2 sin θ.

• ECSRC,ELSRC,ES1RC,ES2RC,ES3RC – 2D arrays containing the source terms (the right hand side of
the equations) associated with the presence of matter in the elliptic PDEs. Respectively, the source
for the equations for ψ, αψ, Xr, Xθ, Xφ, where Xi ≡ W i or Xi ≡ βi.

• CURVC,CURVR,CURVT,CURVP – 2D arrays containing the source terms associated with the curvature
of the metric, respectively for the two scalar Poisson equations (for ψ and αψ) and for the three
components of the second vector Poisson equation (that for βi).

• MU,NU – 1D arrays containing the metric terms of the radial TOV solution. The metric employed is
that for isotropic coordinates, namely ds2 = −eνdt2 + eµ(dr2 + r2dθ2 + r2 sin2θ dφ2).

• RHOTV,PRTV,ETV – 1D arrays containing the fluid variables of the radial TOV solution, respectively
ρ, p, ρε.

• RHONEW,PNEW,ENEW,V3NEW,B3NEW,E3NEW – 2D arrays, respectively ρ, p, ρε, vφ, Bφ, Eφ computed
for an equilibrium configuration on the metric at the end of each step of the convergence loop.

• BPOLR,BPOLT,EPOLR,EPOLT,APHI,ATIM – 2D arrays, respectively, Br, Bθ, Er, Eθ, Ãφ ≡ Φ, At ≡ Ψ

for the magnetic configuration with poloidal field components.
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2.3. Files and Outputs

Here is a list of all the files and subroutines included int the XNS package, together with a brief
description of what they do and how they operates. We start with the fortran90 files of the code (with
extension .f90), then we describe the output files produced by a run (with extension .dat), and we conclude
with the IDL (Interactive Data Language) files needed for visualization (with extension .pro). The code
must run in double precision for convergence. The Makefile is provided for both the gfortran (GNU) and
Ifort (Intel) compilers. Precompiler options are: serial (standard XNS run, with no overall convergence
on a specific quantities, it generates the executable XNS-s ) and nwtrps (load the version of XNS with
Newton- Rapshon scheme, generating the executable XNS-nr ).

• XNS.f90 – main program. Makes some consistency checks, and invokes XNSMAIN. Depending on
the pre-compiling option it simply call XNSMAIN (if make serial is used to compile the code), or it
performs a Newton-Raphson search for an equilibrium model with a given value for a desired quantity
of interest, i.e. a certain value of the central density or gravitational mass (if make nwtrps is used).

• XNSMAIN.f90

– subroutine xnsmain – the main kernel of the code: it defines the grid (uniform in this ver-
sion), builds a 2D initial guess based on the 1D TOV output of TOVINI.f90, performs the
convergence loop calling all the various metric solvers and procedures in the appropriate order.
When the loop is over, it writes all the outputs.

– subroutine conformal – solves for the scalar Poisson-like equation for ψ.

– subroutine lapse – solves for the scalar Poisson-like equation for αψ.

– subroutine shiftphi – solves the φ component of the two vector Poisson equations for W i

and βi, given the corresponding source terms.

– subroutine curv1 – computes the curvature source term in the routines for ψ and αψ.

– subroutine curv2 – computes the curvature source term in the routine for βφ.

– subroutine legzo – computes the zeros of Legendre polynomials and the corresponding
weights for Gaussian quadrature integration.

– subroutine lpn – computes the Legendre polynomials and their derivatives.

– subroutine dgtsv – solves the linear system AX = B, where A is a tridiagonal matrix, by
Gaussian elimination with partial pivoting (taken from the LAPACK routines).

– subroutine polint – a polynomial 2nd order interpolation routine (modified from the Nu-
merical Recipes).

• SYSTEM.f90

– module system – contains various parameters of the run, to be specified by the user, and defi-
nitions of common arrays (see the previous sub-sections).
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– subroutine eostov – EoS for the 1D TOV solution (here polytropic), it provides the density
and the thermal energy as functions of the pressure.

– subroutine funcd – used by the root-finding subroutine to derive the central pressure given
the central density.

– function rtsafeg – the root-finding subroutine, based on bisection and Newton’s methods
(modified from the Numerical Recipes), to derive the central pressure.

• HYDROEQ.f90

– subroutine hydroeq – given the CFC metric and a value of ρc it computes the equilibrium
configuration for the corresponding Bernoulli integral (works for polytropic EoS). It finally calls
hydrovar_<x> depending on the physical parameter set in SYSTEMXNS.f90 to compute local
equilibrium quantities.

– subroutine hydrovar, hydrovar_tor, hydrovar_pol – they compute local equilibrium
quantities such as ρ,p,vφ,Bi and Ei depending on the specific choice for the magnetization (re-
spectively unmagnetized case, purely toroidal magnetic field and poloidal magnetic field).

– subroutine covterm – computes the local terms of the metric tensor

– subroutine cons_to_prim – computes the inversion from conserved to primitive variables.

– subroutine cons_to_prim_pol – computes the inversion from conserved to primitive vari-
ables for the specific case of poloidal field.

– subroutine omegavalue – derives the function Ω = Ω(r, θ) for the differential rotation.

– subroutine quantities – computes several quantities (e.g. mass, energy, angular momen-
tum) at the end of the convergence loop, according to standard definitions.

– subroutine vecpotphi – solve the Grad-Shafranov Equation for the φ-component of the vec-
tor potential

– subroutine sourcepot – compute source terms (currents and metric) for the Grad-Shafranov
Equation or Maxwell equations depending if the rotational rate OMG is set to zero or not.

– subroutine vecpotphi – called by the subroutine hydrovar_pol when OMG.EQ.0, it solves
the Grad-Shafranov Equation.

– subroutine mxwlsol – called by subroutine hydrovar_pol when OMG.NE.0, it solves iter-
atively the Maxwell-Ampère and the Maxwell-Gauss equation. It finally corrects the solution
for the electric potential Φ in order to guarantee that the MHD condition Φ = −ΩΨ + C is valid
inside the star. Indeed, as explained in Pili et al. (2017), the solution for Φ obtained by solving
the non-homogeneus Maxwell equations, does not satisfy the perfect conducting relation inside
the star, but differs from the MHD solution solution ΦMHD = −ΩΨ + C by an harmonic function
Φa so that Φ = ΦMHD + Φa with ∆Φa = 0. The harmonic function is obtained evoking the
laplace subroutine.
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– subroutine laplace – solves the equations Φa|SNS =
∑
` Y(θ) (a` r`)|SNS (inside the star) and

Φa|SNS =
∑
` Y(θ) (b` r−(`+1))|SNS (outside the star), where SNS is stellar surface and Φa|SNS =

(Φ+ΩΨ+C)|SNS . Each system of equations is solved with a LU decomposition and a subsequent
backward substitution adopting the routines provided in the Numerical Recipes (ludcmp and
lubksb). Notice that, in order to avoid spurious effects, the surface terms are evaluated on top
of the super-ellipsoid that best fit the numerical surface.

– subroutine solveaphi and subroutine solveatim – solve respectively for the Maxwell-
Ampère and Maxwell-Gauss equations.

• TOVINI.f90

– subroutine tovini – solves the 1D TOV equations in isotropic coordinates to provide the
initial guess. It uses a shooting method to achieve convergence.

– subroutine rk4 – the 4th order RK integrator (modified from the Numerical Recipes).

– subroutine derivs – provides the derivatives needed to integrate the TOV equations via the
RK4 method.

– subroutine init – a Taylor expansion of the TOV equations at small initial radii (they are
singular for r → 0).

Outputs

• Grid.dat – contains the mesh points.

• TOVini.dat – contains the 1D TOV solution (r, µ, ρ, ν, p, ρε)

• Source.dat – contains 2D source term for the metric solver (ρ, p, ρε)

• XShiftphi.dat – contains the Wφ component and the related source term of its vector Poisson
equation.

• Conformal.dat – contains ψ and the two (matter and curvature) source terms of its scalar Poisson
equation.

• Primitive.dat – contains the primitive variables (ρ, p, ρε, vφ, Bφ) recovered self-consistently from
the metric and the conserved variables.

• Primitive_mag.dat – contains the magnetic primitive variables (Bφ, Br, Bθ) recovered self-consistently
from the metric and the conserved variables.

• Lapse.dat – contains α and the two (matter and curvature) source terms of the related scalar Poisson
equation.

• Shiftphi.dat – βφ vector and the related source term of the vector Poisson equation
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• Rhovec.dat – central density at each step of the XNSMAIN subroutine

• Hydroeq.dat – contains the new equilibrium configuration (ρ, p, ψ, vφ, α, βφ)

• Hydroeq_mag.dat – contains the new equilibrium configuration for magnetic field (Bφ, Br, Bθ, Ãφ,
Eφ, Er, Eθ, At, Jφ, Jr, Jθ).

• Mxwll_test.dat – cointains data related to the source term of both Maxwell-Ampère and Maxwell-
Gauss equation (ρe, Jφ, Φint, Φext, Φa, ω, Γ)

• Apconv.dat – maximum value of Ψ at each step of the XNSMAIN subroutine

• Atconv.dat – maximum value of Φ at each step of the XNSMAIN subroutine

• LogFile.dat – summary of the run (input and output quantities).

IDL visualization routines

• xnsdata.pro – visualizes properties of the equilibrium solution that is computed by the code.

• imdisp.pro – subroutine for visualization display.

3. Examples

Here we present a few examples to show how to work with the code and the related performances. All
cases have been run on a simple laptop.

3.1. A 2D uniformly rotating case

Let us consider the case of a uniform rotator. We are interested in deriving an equilibrium model
corresponding to a central density ρc = 1.2769e-3 and a rotation rate Ωc = 0.002633. This is the Model
BU8 of Stergioulas et al. (2004). The solution will then be compared with the one derived by the RNS code
(Stergioulas & Friedman 1995; Nozawa et al. 1998), which can be considered as a fiducial solution.

We chose the following setup:
NR = 250, NTH = 100, NVALUE = 100, MAXLOOP = 1000,

RMIN = 0.,RMAX = 20., STRETCH=.FALSE.,

QUOC = 0, QUCONV = 1.277E-3, RHOINI = 1.28E-3,
K1 = 100., GAMMA = 2.

OMG = 0.02633, A2VALUE = 0.0, DIFFERENTIAL = .false.

IMAG = .false., ITOR = .false., IPOL = .false., ITWT = .false.

BCOEF = 0., MAGIND = 1., KBPOL = 0., CSI = 0., KBTT = 0., ATWT = 0.,
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NPOL =0., CONVF = 1.E-4, REQMAX = 11.6,
QFACTOR=0.7 (using 1 fails to converge), MLS = 20, NGQ = 50, TOLCONV = 1.d-10
Notice that, since we are searching for a specif central density (QUOC = 0), the code must be compiled using
make nwtrps in order to load the global iteration scheme.

We try as initial guess the value: RHOINI = 1.28e-3, quite close to the desired value. Given the
oscillatory nature of the XNSMAIN convergence algorithm, it takes about 130 steps for each call of substep
done by XNSMAIN to get a converged results with accuracy 10−7. For this test the code must be compiled
using make nwtrps. Then several quantities are provided on the new configuration, and the CPU time it
took :
Stellar Quantities -

Gravit. Mass = 1.6913789416057985

Rest Mass = 1.8256780716420724

Proper Mass = 1.9297345392332990

Rotat. Energy = 2.3933124381473516E-002

Angul. Moment. = 1.8179357676774555

Magnet. Energy = 0.0000000000000000

MEnergy Ratio = 0.0000000000000000

KEnergy Ratio = 9.1247249207515174E-002

Equatorial Radius = 11.320000000000000 16.715814903359849 KM

Radius Ratio = 0.59010600706713778

Circ Radius = 13.115464777544160 19.367109681357231 KM

Def.rate = 0.24311855795287238

These can be compared to the values provided by the authors of RNS for the mass (1.692), and the
kinetic energy ratio (0.18) [see Figs. 1-2 for a detailed comparison]. The differences are again due both
to the XCFC approximation, discretization errors, ad the presence of an atmosphere. Note that despite the
difference in kinetic energy the velocity and density profiles are indistinguishable.

3.2. A 2D purely toroidal case

Let us now consider a more interesting case of a static configuration with purely toroidal field. We
are interested in deriving an equilibrium model corresponding to the one reported in Table 2 of Pili et al.
(2014) with m = 1 and central density 16.85×1014 g cm−3. This is a maximum mass model. For this reason
convergence is searched for the central density, and not for the mass. Indeed XNS looks for zeros and cannot
look for maxima/minima.

We chose the following setup (to do this test the code must be compiled using make nwtrps):
NR = 250, NTH = 100, NVALUE = 100, MAXLOOP = 1000,

RMIN = 0.,RMAX = 30., STRETCH=.FALSE.
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Fig. 1.— Left: comparison of the equatorial and polar density between XNS (dashed line) and RNS (solid
line). The maximum deviation is < 10−7 in absolute value, and is mostly due to the truncation at the stellar
surface. Right: comparison of the rotational velocity at the equator between XNS (dashed line) and RNS
(solid line) [note that RNS extends the velocity profile also to the atmosphere].

Fig. 2.— Errors of the equatorial lapse and conformal factor between RNS and XNS. Solid line is the
lapse; dotted and dashed lines are the conformal factors, note that RNS uses quasi-isotropic coordinates
and the coefficient ψ4 multiplying (dr2 + r2dθ2) differs from R/(r2 sin (θ)2) multiplying dφ2, so we plot
the difference with both; dot-dashed line is the difference between ψ4 and R/(r2 sin (θ)2) , given by RSN
which can be considered as a measure of the non conformally-flatness of the solution (the XCFC intrinsic
approximation error). Note that XNS errors are of order of the XCFC approximation errors.
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QUOC = 0, QUCONV = 2.7164E-3, RHOINI = 2.513E-3,
K1 = 110., GAMMA = 2.

OMG = 0.0, A2VALUE = 0.0, DIFFERENTIAL = .false.

IMAG = .true., ITOR = .true., IPOL = .false., ITWT = .false.

BCOEF = 5.806, MAGIND = 1., KBPOL = 0., CSI = 0., KBTT = 0., ATWT = 0.,

NPOL =0., CONVF = 1.E-4, REQMAX = 28.0,
QFACTOR=0.5 (using 1 fails to converge), MLS = 20, NGQ = 50, TOLCONV = 1.d-10

We try as initial guess the value: RHOINI = 2.513E-3, quite close to the best guess, in fact conver-
gence is achieved within a few steps. Then several quantities are provided on the new configuration, and the
CPU time it took:
Stellar Quantities -

Gravit. Mass = 1.9461801125091531

Rest Mass = 2.0411290086614193

Proper Mass = 2.2022317039068002

Rotat. Energy = 0.0000000000000000

Angul. Moment. = 0.0000000000000000

Magnet. Energy = 0.10810760965626250

MEnergy Ratio = 0.29686908732057110

KEnergy Ratio = 0.0000000000000000

Equatorial Radius = 12.300000000000001 18.162943755417505 KM

Radius Ratio = 1.1365853658536584

Circ Radius = 14.240642791734739 21.028617403843072 KM

Def.rate = -1.1520720810951663

Mag. Flux = 1.4785869645379783 2.6930780474785728E+022 Wb,

Bmax = 1.5095656480911322E-002 1.2607024455370698E+018 G

Note that the differences in the various radii and related quantities between this run and the one reported
in Table 2 by Pili et al. (2014) are due to truncation errors. Indeed they are equal to RMAX/NR = 0.12 and
in relative terms ∼ 5 × 10−3. In Fig. 3 the density and magnetic field distribution are shown using the
xnsdata.pro IDL program.

3.3. A 2D purely poloidal case

Let us now consider a static configuration with purely poloidal field. We are interested in deriving
an equilibrium model corresponding to the one reported in Table 4 of Pili et al. (2014) and central density
16.76 × 1014 g cm−3. Again, this is a maximum mass model. For the same reason as before, convergence
is searched for the central density, and not for the mass. XNS looks for zeros and cannot look for max-
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ima/minima. We chose the following setup (use make nwtrps to compile the code):
NR = 250, NTH = 100, NVALUE = 100, MAXLOOP = 1000,

RMIN = 0.,RMAX = 25., STRETCH=.FALSE.,

QUOC = 0, QUCONV = 2.7025E-3, RHOINI = 2.75E-3,
K1 = 110., GAMMA = 2.

OMG = 0.0, A2VALUE = 0.0, DIFFERENTIAL = .false.

IMAG = .true., ITOR = .false., IPOL = .true., ITWT = .false.

BCOEF = 0.0, MAGIND = 0., KBPOL = 0.437, CSI = 0., KBTT = 0., ATWT = 0.,

NPOL =0., CONVF = 1.E-4, REQMAX = 18.0,
QFACTOR=0.5 (using 1 fails to converge), MLS = 20, NGQ = 50, TOLCONV = 1.d-10

We try as initial guess the value: RHOINI = 2.75E-3, quite close to the best guess, in fact convergence
is achieved within a few steps. Then several quantities are provided on the new configuration, and the CPU
time it took :
Stellar Quantities -

Gravit. Mass = 1.7598327977363997

Rest Mass = 1.9176439597453208

Proper Mass = 2.1837344396429783

Rotat. Energy = 0.0000000000000000

Angul. Moment. = 0.0000000000000000

Magnet. Energy = 2.9955923403271075E-002

MEnergy Ratio = 6.6002917419301116E-002

KEnergy Ratio = 0.0000000000000000

Equatorial Radius = 6.2500000000000000 9.2291380871023900 KM

Radius Ratio = 0.85599999999999998

Circ Radius = 8.1621102465780666 12.052678807651571 KM

Def.rate = 0.14725262994099331

Mag. Dipole = 0.39312249837664015

Bmax = 1.3937856539534466E-002 1.1640096505345989E+018 G

Note that, as before, the differences in the various radii and related quantities between this run an the one
reported in Table 4 by Pili et al. (2014) are due to differences in the settings (higher resolution and stronger
convergence was imposed in those model), and different truncation in the accuracy we chose for the density
and other quantities. Such differences however are a few 10−3 on almost all quantities and only ∼ 1% on
the magnetic terms. In Fig. 4 the density and magnetic field distribution are shown using the xnsdata.pro
IDL program.
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Fig. 3.— Left panel: baryonic density in linear scale. Central panel: baryonic density in Log10 scale. Right
panel: magnetic field strength in linear scale.
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Fig. 4.— Left panel: baryonic density in linear scale. Central panel: baryonic density in Log10 scale. Right
panel: magnetic field strength in linear scale.
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3.4. A rotating star with a purely poloidal magnetic field

We now discuss a model that includes both rotation and poloidal magnetic field. We stress that this
version of XNS is not designed to work with rotating mixed field configuration but only purely toroidal or
purely poloidal field can be chosen together with rotation. Here we derive the equilibrium configuration
presented in Table 4. of Pili et al. (2017) with maximum magnetic field strength 5.72 × 1017 G.

In order to reduce the computational time of the test, we suggest to drop the Newton-Raphson global
convergence compiling the code with make serial. We directly provide the right setup to obtain the re-
quired solution:
NR= 600, NTH = 300, NVALUE =100, MAXLOOP = 1000,

RMIN = 0., RMAX = 30., REQMAX = 15.0, STRETCH=.FALSE.,

RHOINI = 7.4431E-004, K1 = 110., GAMMA = 2.,

OMG = 5.e-3, DIFFERENTIAL = .FALSE., A2VALUE = 0.0,

IMAG = .TRUE., ITOR = .FALSE., IPOL = .TRUE., ITWT = .FALSE.

KBPOL = 0.3973242, CSI = 0., QNULL=.TRUE., CTP=.FALSE.,

MLS = 40, NGQ = 80, MLSL= 20 , QFACTOR=0.5, QAPHI=1.,

EPS=1.E-7, TOLCONV = 1.D-10.

We obtain the following quantities:
Gravit. Mass = 1.5506213174258330

Rest Mass = 1.6424667614658279

Proper Mass = 1.7182455199175202

Rotat. Energy = 9.6505051682437427E-004

Angul. Moment. = 0.39211162557271256

Magnet. Energy = 2.7902253467743068E-002

MEnergy Ratio = 0.14200233876834248

KEnergy Ratio = 4.9114108499188364E-003

Equatorial Radius = 10.324999999999999 15.246536119893147 KM

Radius Ratio = 0.63680387409200978

Circ Radius = 12.015042216707855 17.742157398457856 KM

OMGcen = 5.0000000000000001E-003

OMGeq = 5.0000000000000001E-003

Mag. Dipole = 0.91968584612156790

Bmax = 6.8535047027379770E-003 5.7236531251007693E+017 G

B@pole = 2.3606635430019137E-003 1.9714904784141261E+017G

Def.rate = 0.31790200027471760

In the left and central panels of Fig. 5 we show the density, the electric and the magnetic field distribu-
tion as obtained with the xnsdata.pro IDL program.
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3.5. Twisted Magnetosphere

As a final test we present a NS endowed with a twisted magnetosphere. This allow us to discuss how to
initialize an irregular grid as the one presented in Pili et al. 2015. In particular we want to obtain a NS with a
twisted magnetosphere extending up to four stellar radii adopting the current distributions prescribed, again,
in Pili et al. 2015 (see in particular equations 10 and 11 of the cited paper). This prescription on the currents
free function has been chosen as a default for the present version of the code in the case of mixed field
configuration. However, other possible choices (as those presented in Pili et al. 2014, Bucciantini et al. 2015
and references therein) can be implemented by modifying the source term of the Grad-Shafranov equation
(in particular TERM1 and TERM4 with ITWT=.TRUE. in the VECPOTPHI subroutine) and the expressions for
the toroidal magnetic field and the current density (B3NEW , JRR ,JTH and JPHI rispectively at lines 357,
376, 380 and 382 of HYDROEQ.f90 in the HYDROVAR_POL subroutine) accordingly.

The initialization of the code is the following:
NR= 600, NTH = 300, NVALUE =100, MAXLOOP = 1000,

RMIN = 0., RMAX = 80., REQMAX = 15.0,

STRETCH=.TRUE., NRREG=300, RREG=20.,

RHOINI = 1.38E-3, K1 = 110., GAMMA = 2.,

OMG = 0.0, DIFFERENTIAL = .FALSE., A2VALUE = 0.0,

IMAG = .TRUE., ITOR = .FALSE., IPOL = .FALSE., ITWT = .TRUE.

KBTT=3.4E-004, ATWT=1.4E-003, ZETA=0.0, CUT=4.,

MLS = 40, NGQ = 80 , QFACTOR=1., QAPHI=1.,

EPS=1.E-7, TOLCONV = 1.D-10.
With the flag STRETCH set to .TRUE. the XNS code builds a grid that is regularly spaced up to a radius
RREG with NRREG radial grid points, and it is uniformly stretched from RREG to RMAX with ( NR-NRREG ) grid
points and with a geometrical stretching ratio that is automatically computed by the code (listed in output in
the Logfile.dat as STR ).

With this initialization we obtain the following quantities:
Gravit. Mass = 1.5500667797561587,

Rest Mass = 1.6777495847029595,

Proper Mass = 1.7964441248872729,

Magnet. Energy = 2.3564563496900486E-008,

MEnergy Ratio = 9.5644188513138740E-008,

Equatorial Radius = 8.0333333333333332 11.862518821288939 KM,

Radius Ratio = 1.0000000000000000,

Circ Radius = 9.6588808535873785 14.262903226340372 KM,

Mag. Flux = 9.7338287561287665E-004 1.7729062388452243E+019 Wb,

Mag. Dipole = 1.2222307023858927E-003,

Bmax = 7.7724764125643341E-006 649112546618277.12 G,

B@pole = 1.6105575803360884E-006 134504510140084.72 G,

Poloidal En = 2.1267399350246760E-008,
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Toroidal En = 2.2971641466541446E-009,

Tor./Total = 9.7483840384155515E-002,

The profile of both the toroidal and poloidal component of the magnetic field for this model is shown
in the right panel of Fig. 5.
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Fig. 5.— Left and center panels: baryonic density, strength of the poloidal electric field (left-half of central
panel) and strength of the poloidal magnetic field (right-half of central panel) for the configuration discussed
in section 3.4. Right panel: toroidal and poloidal magnetic field strength for the configuration discussed in
Section 3.5. Here the red lines represent the boundary of the twisted magnetosphere, where the toroidal
component of the magnetic field does not vanish.


