
SKA – TDT Group

On Phase Computation during Folding
C.Baffa, E.Giani January 2014

The last part of pulsar search algorithm, as in the SKA TDT group approach, is the verification and
optimization of pulsar parameters candidates identified in the previous phases. This part can be divided
in two portions: folding of data and optimization.
The folding process is in reality a procedure to integrate the pulsar signal over the local integration
time (typically 600sec) taking into account at least two physical effects: earth-source relative velocity
changes (acceleration) and interstellar medium refractive index (de-dispersion).
To compute both folding and correction for physical effects, it is necessary to operate on the exact time
stamps of the signal, normally quantized in time step of 50μs, which, in turn, must be converted to a
phase measure, to accumulate the pulsar signal data in a coherent way. The computation thus involves
up to 107 time-steps on one local integration time.

Figure 1: Float versus Double differences in time and phase computation. Total time 600s.

If the folding is performed on a X86 CPU the phase computation gives no numerical problems, as the
computations can be performed as a double float number without destructive performance loss. On
GPU, instead, there is a significant performance hit using double-type computations. Therefore the
folding computation is normally performed as single precision float.
The floating point standard adopted on both X86 and GPU is the IEEE 754, which prescribe a mantissa
of 24 bit on single precision (sign plus 6.9 digits). As a consequence a single precision number cannot
precisely locate the more than 107 time-steps of an elementary integration within its 6.9 digits. We
performed a simulation on Octave/Matlab on a x86 CPU to assess the error deriving from the single
precision computation.
The errors, both in time and in phase computation, are plotted in the Figure 1. Abscissa is the sample
sequential number, which directly correlate to the sample measure time. We note that SKA algorithm
sets the zero time at the center of data stream, thus mitigating the precision problem.
On the upper panel it is shown the differences in time determination of the sample between single and
double float computation. As errors runs from minimum value to maximum during every period, the
graph appear as a filled area, on our full integration scale, revealing its line nature only at the largest
enlargement.
The minimum error is near the center of the plot, as a consequence of the zero location choice. The
maximum time error is around 30μs, which is acceptable for physical effect computations. For phase
computation this error is important.
On the lower panel it is shown the differences in phase computation. As in previous case, the minimum
error is near the center of the plot, and the more noisy appearance is probably due to a larger number of
rounding operations.
As the phase errors are expressed as fractions of the full period (in our case 44 measurement of 50μs),
it is evident that the maximum integration time compatible with single precision phase computation is
very short.
It is also to be considered that on x86 the IEEE standard is fully implemented, while on GPU the
standard is implemented with a less conservative (and faster) approach, and the weakest part is the
rounding phase.
We therefore assess the necessity to perform the time and phase computations on double precision
format, to avoid integrations errors and the resulting S/N degradation, due to smearing of the
accumulated signal.

	SKA – TDT Group
	On Phase Computation during Folding

