Epoch of Reionization: 21-cm signal fluctuations from inhomogeneous Ly-α background

June 2007

Benoît Semelin Françoise Combes Sung Hye Baek

LERMA – Observatoire de Paris

21-cm signal: brightness temperature

The 21-cm brightness temperature depends on:

- T_{ς} : Hydrogen spin temperature
- δ : Baryon overdensity
- $1-x_i$: Neutral fraction

$$\delta T_B = T_B - T_{CMB} \propto (1 + \delta) \left(\frac{1 - x_i}{T_S} \right) \left(\frac{T_S - T_{CMB}}{T_S} \right)$$

 \Rightarrow If $T_S < T_{CMB}$, signal seen in absorption against the CMB If $T_S > T_{CMB}$ signal seen in emission.

<u>Simulations required to predict T_b:</u>

- δ : Dynamics (DM + hydro)
- 1-x; : Dynamics + Star formation + Radiative transfer (UV continuum)
- T_s : Dynamics + Star formation + Radiative transfer (UV continuum + $Ly-\alpha$)

21-cm signal: physics of the emission

Value of the spin temperature T_s : 3 competing processes

- → Scattering of CMB photons: $T_S \rightarrow T_{CMB}$ on a time scale 3. $10^5/(1+z)$ years.
- Collisions with e or other atoms: $T_S \to T_K$ in dense regions $(\delta \rho / \rho > 30 \text{ at z} = 10)$.
- **Pumping by Ly-α photons** (Wouthuysen-Field effect): T_S → T_c ≈ T_K .

$$T_S^{-1} = \frac{T_{CMB}^{-1} + x_{\alpha} T_c^{-1} + x_{col} T_K^{-1}}{1 + x_{\alpha} + x_{col}} \qquad \text{with} \qquad x_{\alpha} = \frac{4 P_{\alpha} T_*}{27 A_{10} T_{CMB}} \qquad \text{be a scattering sper atom per second}$$

$$T_C \approx T_K \qquad T_C \approx T_K$$

atom per second

Our goal: compute P_{α} with full radiative transfer.

Non-uniform Ly-a pumping

- <u>Usual approach</u>: uniform $P_{\alpha}(z)$ for 21-cm emission maps

Usually simple z threshold \Rightarrow T_s(z > z₀) = T_K

 δT_b fluctuations from ρ_{HI} and T_K fluctuations only.

- Improved approach: non-uniform P_{α} (Barkana & Loeb 2005, Pritchard & Furlanetto 2006)

 $\sqrt{P_q} \propto J(v_q) \propto 1/r^2 \iff$ No wings in line profile

✓ Contribution from upper Lyman series line. ►

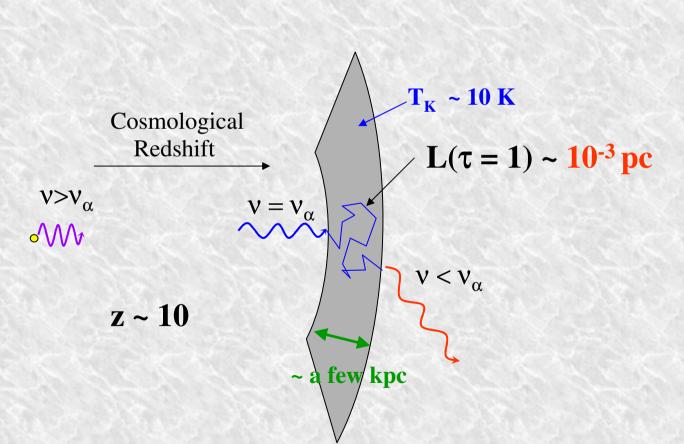
✓ Source distribution (clustering + Poisson)

Significant enhancement

of δT_b fluctuations (up to ~ 10 mK)

Here P_a is independent of gas density (except for source position)

- Full radiative transfer approach: (Semelin, Combes and Back 2007, submitted to A&A)


✓ Monte Carlo radiative transfe

- \checkmark Ly-α line only (for now)
- ✓ Direct P_a evaluation

 P_{α} is not $1/r^2$: **steeper and anisotropic** \Rightarrow **Larger** δT_b fluctuations

Lyman-alpha simulations

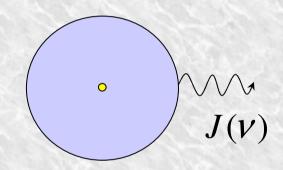
Lyman-α cosmological radiative transfer:

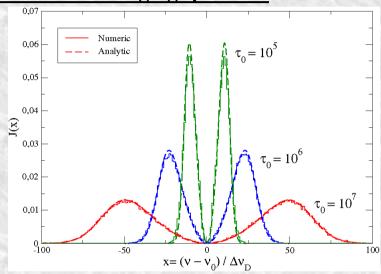
Challenges:

- High τ fluctuations on small scales
- High τ values

Easy part:

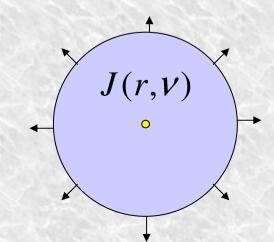
- -Almost no feedback on dynamics.
- -No feedback on ionisation

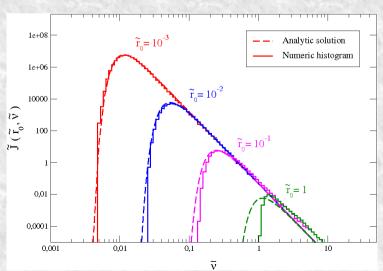

Ly-\alpha transfer with LICORICE: algorithms and validation tests


Main features:

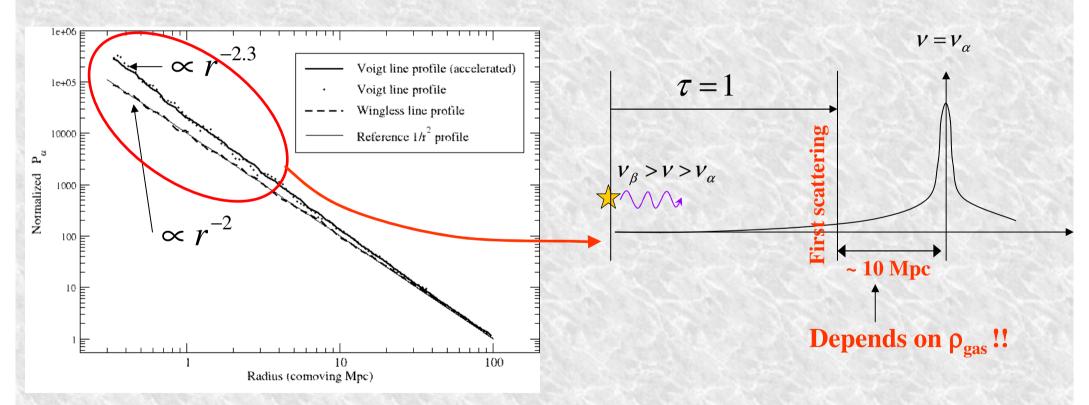
- Monte Carlo+ Ray Tracing
- Adaptative grid
- Resonant scattering with Voigt line profile.
- Core-skipping acceleration scheme.
- Cosmological expansion included

Homogenous spherical cloud, central source: emerging spectrum

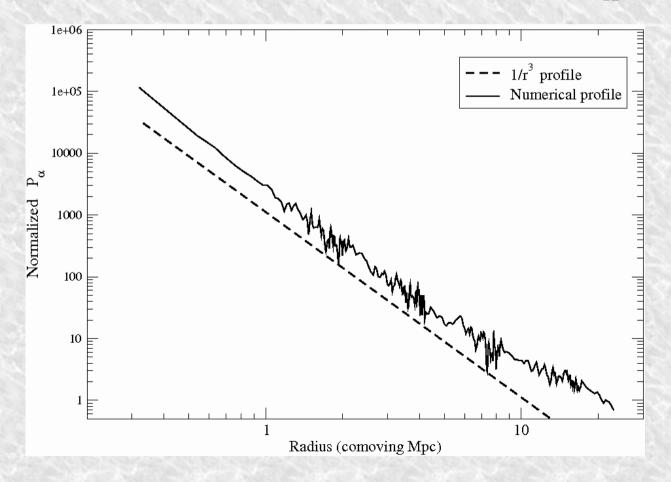

(Dijkstra et al. 2006)



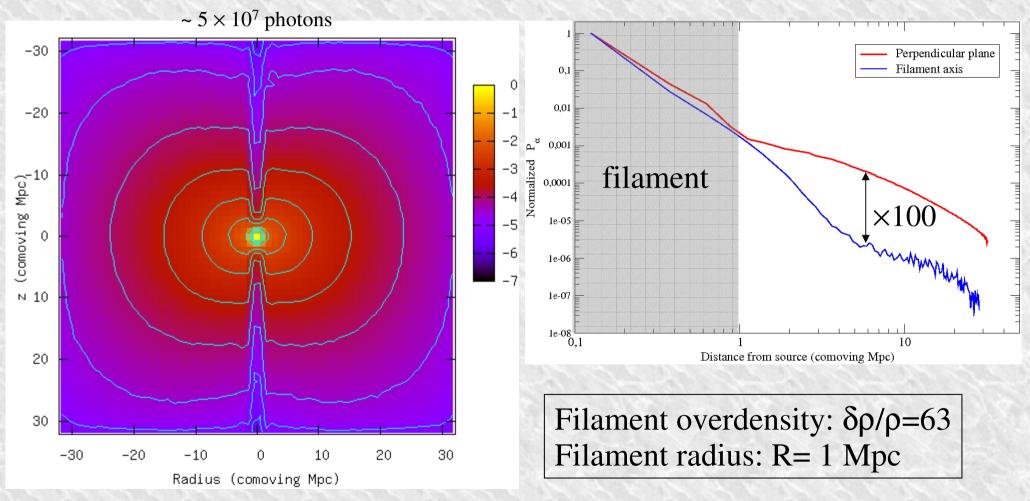
Expanding spherical cloud ($T_K=0$), central source: intensity map


(Loeb & Rybicki, 1999)

P_{α} profiles in EoR-like situations


- Central source, flat spectrum
- Uniform gas medium ($T_K=30K$, $\rho_{gas}=\rho_{crit}$, $z\sim10$)

 P_{α} profile is **not 1/r² at r < 10 Mpc** because of **wing scattering.**


P_{α} profiles in EoR-like situations

- Central source, flat spectrum
- $1/r^2$ gas density profile out to 10 Mpc ($T_K=30K$, $z\sim10$)

 $P_{\alpha} \sim 1/r^3$ where $\rho_{gas} \sim 1/r^2$

P_{α} map around a filament

- ✓ Strong P_{α} depletion in the filament (shielding effect).
- ✓ Oblate contours up to large scales (axis ratio ~2 at 10 Mpc)

Conclusions & prospects

- Full radiative transfer affects P_{α}
- Surounding gas density affects P_{α}

What next?

Apply to an EoR simulations => produce 21-cm map

- For a static output.
- For the evolving density/ionization-fraction/source fie

Include upper Lyman series lines.