Disequilibrium in planetary atmospheres:

a new physical method coupled with new computational tool

Eugenio Simoncini

Astrophysical Observatory of Arcetri - INAF, Firenze, Italy
Atmospheric Chemical Disequilibrium and Life

Earth
The extent of chemical disequilibrium

\[\frac{d_i S}{dt} = J \cdot X = \frac{d \xi}{dt} \cdot \frac{\alpha}{T} \]

Extent of reaction:
\[\xi(t) = \frac{[A]_0 - [A](t)}{\nu_A} \]

Chemical Affinity
\[\alpha(t) = -\left(\frac{\partial \Delta_r G(t)}{\partial \xi} \right)_{T,p} \]

It can be also written as:
\[\frac{d_i S}{dt} = R \cdot (R_f - R_r) \cdot ln \left(\frac{R_f}{R_r} \right) \]

\[R_f = \text{forward rate} \]
\[R_r = \text{backward rate} \]

Simoncini E., Extent of chemical disequilibrium and planetary habitability, \textit{in prep.}
[The chemical potential and the reaction kinetics]

\[k_r = k_f \cdot \exp \left(\frac{\Delta_R G^0}{R \cdot T_0} + K_R(T) \right) \]

\[\text{CO} + \text{NO}_2 \rightleftharpoons \text{CO}_2 + \text{NO} \]

KROME

- Python Pre-processor provides Fortran routines
- Creates modules from chemical network
- Dust evolution, Cooling, Heating, Photoionization
- Large test suite (MC, 1D SNe, planet, stellar, 3D wrappers, …)
- Highly optimized, fast solvers
- Open source, bitbucket community
- Grassi et al. 2013

www.kromepackage.org
Earth Atmospheric Chemical Disequilibrium

Our first calculation:

* 64 layers (~1km each); no eddy diffusion, only chemistry.

* Entropy production and the power dissipation

\[\sigma = \frac{d_i S}{dt} \]

\[\frac{\sigma \times T}{A_{Earth}} \sim W m^{-2} \]
Earth Power dissipation in atmosphere

Thermal or mechanical powers in the Earth’s atmosphere:

\[\sim 10/100 \text{ W m}^{-2} \]
Perspectives

• Comparison of entropy production between planets (=> habitability?)
• Comparison between different power sources
• Application to any typology of exoplanet
Thanks for your attention!

T. Grassi, Università di Roma - La Sapienza, Rome, Italy.

J. R. Brucato, Astrophysical Observatory of Arcetri - INAF, Firenze, Italy

M. J. Russell, JPL, CalTech-NASA, Pasadena, CA, USA

S. Branciamore, Beckman Research Institute of City of Hope, CA, USA

A. Delgado-Bonal, J. Plá, T. Mendaza-de Cal, Maria Serrano, Centro de Astrobiologia, INTA-CSIC, Madrid, Spain

Kleidon, N. Virgo, Max Planck Institute for Biogeochemistry, Jena, Germany

L. Grenfell, S. Gebauer, T.U. - DLR, Berlin, Germany

All members of the TDE Focus Group - NASA Astrobiology Institute