Self-confinement of low-energy cosmic rays around supernova remnants

Philipp Mertsch with Hanno Jacobs, Minh Phan

Cosmic rays 2: The salt of the star formation recipe 8 November 2022

Roles of cosmic rays

Cosmic rays as salt

- Provide pressure support
- Provide heating

• . . .

- Ionise molecular clouds
- Regulate coupling of gas and magnetic field

Roles of cosmic rays

B

Cosmic rays as salt

- Provide pressure support
- Provide heating

٠

- Ionise molecular clouds
- Regulate coupling of gas and magnetic field

Cosmic rays as bread and butter

Produce local fluxes

sources

transport

sources	source
transport	transport

"Reacceleration"

- 2nd-order Fermi acceleration
- Better fit to boron-to-carbon Strong & Moskalenko (1998)
- Too much power from turbulence? Drury & Strong (2016)

Escape from shock

- Confinement by **B**-fields
- $\rightarrow\,$ Escape probability function of rigidity and time
- Time-integrated spectrum? gamma-rays?

Near-source confinement

- Resonant streaming instability
- Self-similar solution Malkov et al. (2013)
- Strong dependence on ionisation Nava et al. (2016, 2019), Recchia et al. (2021)

The cosmic ray cloud

Malkov et al. (2013)

Cosmic ray self-confinement

Ptuskin, Zirakashvili, Plesser (2008); Malkov et al. (2013); Nava et al. (2016)

$$\frac{\partial_t P_{CR} + v_A \partial_z P_{CR}}{D_{zz}(z, p) \sim \frac{D_B(p)}{I(k)} \Big|_{k=1/r_g}}$$

- CR pressure $P_{CR} = p^4 f$
- Diffusion coefficient $D_{zz}(z, p)$
- Bohm value D_B(p)
- Turbulence spectral energy density I(k)

Cosmic ray self-confinement

Ptuskin, Zirakashvili, Plesser (2008); Malkov et al. (2013); Nava et al. (2016)

- CR pressure $P_{CR} = p^4 f$
- Diffusion coefficient $D_{zz}(z, p)$
- Bohm value D_B(p)
- Turbulence spectral energy density I(k)
- Growth rate $\Gamma_{CR}(z, k)$
- Damping rate Γ_d

Cosmic ray self-confinement

Ptuskin, Zirakashvili, Plesser (2008); Malkov et al. (2013); Nava et al. (2016)

- CR pressure $P_{CR} = p^4 f$
- Diffusion coefficient $D_{zz}(z, p)$
- Bohm value D_B(p)
- Turbulence spectral energy density I(k)
- Growth rate $\Gamma_{CR}(z, k)$
- Damping rate Γ_d

Around supernova remnants:

Nava & Gabici (2013), D'Angelo *et al.* (2016, 2018), Nava *et al.* (2019), Brahimi *et al.* (2020), Brose *et al.* (2021), Schroer *et al.* (2021), Recchia *et al.* (2022), Jacobs, Mertsch, Phan (2022)

Around pulsar wind nebulae:

Evoli, Linden, Morlino (2018), Linden & Mukhopadhyay (2022)

On Galaxy scales:

Amato, Blasi, Serpico (2012), Evoli et al. (2016)

The phases of the $\ensuremath{\mathsf{ISM}}$

Phase	<i>T</i> [K]	<i>n</i> [cm ⁻³]	filling factor	ionisation fraction	neutrals	ions
HIM	10 ⁶	10^{-2}	0.5	1	-	H^+
WIM	8000	0.35	0.25	0.6-0.9	H, He	H^+
WNM	8000	0.35	0.25	10^{-2}	H, He	H^+
CNM	80	35	~ 0	10^{-3}	H, He	C^+
DiM	50	300	~ 0	10^{-4}	H ₂ , He	C^+

Most of the ISM mass in molecular clouds, but filling factor tiny.

The phases of the ISM

	Phase	<i>T</i> [K]	<i>n</i> [cm ⁻³]	filling factor	ionisation fraction	neutrals	ions
	HIM	10 ⁶	10^{-2}	0.5	1	-	H ⁺
Most promising at low energies	WIM	8000	0.35	0.25	0.6-0.9	H, He	H+
	WNM	8000	0.35	0.25	10^{-2}	H, He	H ⁺
	CNM	80	35	\sim 0	10^{-3}	H, He	C^+
	DiM	50	300	\sim 0	10^{-4}	H ₂ , He	C^+

Most of the ISM mass in molecular clouds, but filling factor tiny.

- Focus on WIM with ionisation fraction 0.9 and WNM
- Alfvén speed v_A larger in WNM due to inefficient coupling of neutrals at low energies

Damping Processes

- Ion-neutral damping (momentum transfer to neutrals)
- Farmer-Goldreich damping (interaction with external turbulence)
- Non-linear Landau damping (interaction of beat of waves with background plasma)

Recchia et al.(2021)

Propagation of low energetic protons

Spatial dependence

- Initially top hat profile
- Test particle solution approximately gaussian
- · Particles confined longer in non-linear simulation
- Diffusion coefficient suppressed up to $\mathcal{O}(100)$
- Suppression lasts 1 Myr

Spatial dependence

- Initially top hat profile
- Test particle solution approximately gaussian
- · Particles confined longer in non-linear simulation
- Diffusion coefficient suppressed up to $\mathcal{O}(100)$
- Suppression lasts 1 Myr

Spatial dependence

- Initially top hat profile
- Test particle solution approximately gaussian
- · Particles confined longer in non-linear simulation
- Diffusion coefficient suppressed up to $\mathcal{O}(100)$
- Suppression lasts 1 Myr

Spectral dependence

H. Jacobs, P. Mertsch, M. Phan, JCAP 05 (2022) 05, 024 [arXiv:2112.09708]

- Softer spectrum at later times
- More flux at later times
- Spectral break closer to Voyager than test particle solution
- Can explain Voyager1 and AMS02 data with two fine tuned sources
- Need statistical approach

M. Phan, F. Schulze, P. Mertsch, S. Recchia, S. Gabici (2021)

(More results \rightarrow Appendix)

$$z = 60 \, \mathrm{pc}$$

Stochasticity

M. Phan, F. Schulze, P. Mertsch, S. Recchia, S. Gabici (2021)

• Combine stochasticity and non-linear approach

 \rightarrow Minh Phan's talk today

DOI: 101			
Phili	nn	Mei	rtsch
	PP -		- coch

Diffusion coefficient

- Low diffusion zone advected with gradient of CR (arrow)
- WIM: suppression lasting over 1 Myr
- WNM: suppression advected to boundary at 500 kyr
- Instantaneous transition from 1D to 3D at boundary overestimation

Grammage

- Increased by factor 3
- Similar results to Recchia et al. (2021) (fig. 4) at $10\,{\rm GeV}$
- WIM: Constant at lowest energies
- WNM: Advection dominated at lowest energies

Summary

CR density \neq (source) × (propagation)

Effects

- Spatial profiles
- Spectra
- Grammage