Fractionation in dark pre-stellar clouds

Eva Wirström Department of Earth and Space Sciences Onsala Space Observatory Chalmers, Sweden

Eva Wirström Fractionation in Dark Clouds

Our isotope tools

Observed line ratios are combinations of:

- a) Elemental abundance ratios set by BB and local history of nucleosynthesis (star formation)
- b) Fractionation processes
- c) Excitation and radiative transfer effects (data interpretation)

	Solar System	local ISM	
D/H	2.00×10 ^{-5 (1)}	1.6×10 ^{-5 (4)}	
¹² C / ¹³ C	89.4 ⁽¹⁾	69 ± 6 ⁽⁴⁾	
¹⁴ N / ¹⁵ N	441 ± 6 ⁽³⁾	388 ± 32 ⁽⁴⁾	
¹⁶ 0 / ¹⁸ 0	499 ⁽¹⁾	557 ± 30 ⁽⁴⁾	
¹⁸ 0 / ¹⁷ 0	5.3 ⁽¹⁾	3.6 ± 0.2 ⁽⁴⁾	
³² S / ³⁴ S	22.5 ⁽²⁾	24 ± 5 ⁽⁵⁾	
³⁴ S / ³³ S	5.6 ⁽²⁾	6.3 ± 1.0 ⁽⁵⁾	
²⁸ Si / ²⁹ Si	19.7 ⁽²⁾		
²⁹ Si / ³⁰ Si	1.5 ⁽²⁾	1.5 ⁽⁴⁾	

- (1) Asplund et al. 2009, ARA&A, 47, 481
- (2) Lodders, 2003, ApJ 591, 1220,
- (3) Marty et al. 2011, Science 332, 1533
- (4) Wilson, 1999 Rep. Progress Phys. 62, 143
- (5) Chin et al, 1996, A&A 305, 960

	Solar System	local ISM	
D/H	2.00×10 ^{-5 (1)}	1.6×10 ^{-5 (4)}	
¹² C / ¹³ C	89.4 (1)	69 ± 6 ⁽⁴⁾	
¹⁴ N / ¹⁵ N	441 ± 6 ⁽³⁾	388 ± 32 ⁽⁴⁾	
¹⁶ 0 / ¹⁸ 0	499 ⁽¹⁾	557 ± 30 ⁽⁴⁾	
¹⁸ 0 / ¹⁷ 0	5.3 ⁽¹⁾	3.6 ± 0.2 ⁽⁴⁾	
³² S / ³⁴ S	22 .5 ⁽²⁾	24 ± 5 ⁽⁵⁾	
³⁴ S / ³³ S	5.6 ⁽²⁾	6.3 ± 1.0 ⁽⁵⁾	
²⁸ Si / ²⁹ Si	19.7 ⁽²⁾		
²⁹ Si / ³⁰ Si	1.5 ⁽²⁾	1.5 ⁽⁴⁾	

- D formed only in Big Bang Nucleosynthesis
- D burned to ⁴He in stars and brown dwarfs
- D/H decrease with stellar processing

- (1) Asplund et al. 2009, ARA&A, 47, 481
- (2) Lodders, 2003, ApJ 591, 1220,
- (3) Marty et al. 2011, Science 332, 1533
- (4) Wilson, 1999 Rep. Progress Phys. 62, 143
- (5) Chin et al, 1996, A&A 305, 960

	Solar System	local ISM	
D/H	2.00×10 ^{-5 (1)}	1.6×10 ^{-5 (4)}	
¹² C / ¹³ C	89.4 (1)	69 ± 6 ⁽⁴⁾	
¹⁴ N / ¹⁵ N	441 ± 6 ⁽³⁾	388 ± 32 ⁽⁴⁾	
¹⁶ 0 / ¹⁸ 0	499 ⁽¹⁾	557 ± 30 ⁽⁴⁾	
¹⁸ 0 / ¹⁷ 0	5.3 ⁽¹⁾	3.6 ± 0.2 ⁽⁴⁾	
³² S / ³⁴ S	22.5 ⁽²⁾	24 ± 5 ⁽⁵⁾	
³⁴ S / ³³ S	5.6 ⁽²⁾	6.3 ± 1.0 ⁽⁵⁾	
²⁸ Si / ²⁹ Si	19.7 ⁽²⁾		
²⁹ Si / ³⁰ Si	1.5 ⁽²⁾	1.5 ⁽⁴⁾	

- ¹²C formed from He in triple-α process (primary)
- ¹³C formed in CNO cycle (>1M_{Sun} stars)
- ¹²C/¹³C decrease
 with secondary
 stellar processing

- (1) Asplund et al. 2009, ARA&A, 47, 481
- (2) Lodders, 2003, ApJ 591, 1220,
- (3) Marty et al. 2011, Science 332, 1533
- (4) Wilson, 1999 Rep. Progress Phys. 62, 143
- (5) Chin et al, 1996, A&A 305, 960

Solar System	local ISM
2.00×10 ^{-5 (1)}	1.6×10 ^{-5 (4)}
89.4 (1)	69 ± 6 ⁽⁴⁾
441 ± 6 ⁽³⁾	388 ± 32 ⁽⁴⁾
499 ⁽¹⁾	557 ± 30 ⁽⁴⁾
5.3 ⁽¹⁾	250
22.5 ⁽²⁾	200 -
5.6 ⁽²⁾	60
19.7 ⁽²⁾	
1.5 ⁽²⁾	100 -
	Solar System $2.00 \times 10^{-5} (1)$ $89.4^{(1)}$ $441 \pm 6^{(3)}$ $499^{(1)}$ $5.3^{(1)}$ $22.5^{(2)}$ $5.6^{(2)}$ $19.7^{(2)}$ $1.5^{(2)}$

- ¹²C formed from He in triple-α process (primary)
- ¹³C formed in CNO cycle (>1M_{Sun} stars)
 ¹²C/¹³C decrease

- (2) Lodders, 2003, ApJ 591, 1220,
- (3) Marty et al. 2011, Science 332, 1533
- (4) Wilson, 1999 Rep. Progress Phys. 62, 143
- (5) Chin et al, 1996, A&A 305, 960

	Solar System	local ISM	
D / H	2.00×10 ^{-5 (1)}	1.6×10 ^{-5 (4)}	
¹² C / ¹³ C	C 89.4 ⁽¹⁾ $69 \pm 6^{(4)}$	69 ± 6 ⁽⁴⁾	
¹⁴ N / ¹⁵ N	441 ± 6 ⁽³⁾	388 ± 32 ⁽⁴⁾	
¹⁶ 0 / ¹⁸ 0	499 ⁽¹⁾	557 ± 30 ⁽⁴⁾	
¹⁸ 0 / ¹⁷ 0	5.3 ⁽¹⁾	3.6 ± 0.2 ⁽⁴⁾	
³² S / ³⁴ S	22.5 ⁽²⁾	24 ± 5 ⁽⁵⁾	
³⁴ S / ³³ S	5.6 ⁽²⁾	6.3 ± 1.0 ⁽⁵⁾	
²⁸ Si / ²⁹ Si	19.7 ⁽²⁾		
²⁹ Si / ³⁰ Si	1.5 ⁽²⁾	1.5 ⁽⁴⁾	

 $^{14}N(^{1}H,\gamma)^{15}O$

- ¹⁴N builds up in the cold CNO cycle
- ¹⁵N build up from ¹⁵O in the hot CNO cycle
- ¹⁴N/¹⁵N should decrease with massive stellar processing

- (1) Asplund et al. 2009, ARA&A, 47, 481
- (2) Lodders, 2003, ApJ 591, 1220,
- (3) Marty et al. 2011, Science 332, 1533
- (4) Wilson, 1999 Rep. Progress Phys. 62, 143
- (5) Chin et al, 1996, A&A 305, 960

D/H

¹²C / ¹³C

(2)

(3)

(4)

(5)

Elemental abundances

Solar System

2.00×10^{-5 (1)}

89.4 (1)

local ISM

1.6×10^{-5 (4)}

 $69 \pm 6^{(4)}$

 $^{14}N(^{1}H,\gamma)^{15}O$

- ¹⁴N builds up in the cold CNO cycle
- ¹⁵N build up from ¹⁵O in the hot CNO cycle ¹⁴N/¹⁵N should >

Lodders, 2003, ApJ 591, 1220,

Chin et al, 1996, A&A 305, 960

Marty et al. 2011, Science 332, 1533

Wilson, 1999 Rep. Progress Phys. 62, 143

CHALMERS

VERSITY OF TECHNOLOGY

		Solar System	local ISM
	D/H	2.00×10 ^{-5 (1)}	1.6×10 ^{-5 (4)}
	¹² C / ¹³ C	$^{2}C / ^{13}C$ 89.4 ⁽¹⁾ 69 ± 6 ⁽⁴⁾	
¹⁴ N / ¹⁵ N		441 ± 6 ⁽³⁾	388 ± 32 ⁽⁴⁾
	¹⁶ 0 / ¹⁸ 0	499 ⁽¹⁾	557 ± 30 ⁽⁴⁾
¹⁸ O / ¹⁷ O ³² S / ³⁴ S		5.3 ⁽¹⁾	3.6 ± 0.2 ⁽⁴⁾
		22.5 ⁽²⁾	24 ± 5 ⁽⁵⁾
	³⁴ S / ³³ S	5.6 ⁽²⁾	6.3 ± 1.0 ⁽⁵⁾
	²⁸ Si / ²⁹ Si	19.7 ⁽²⁾	
	²⁹ Si / ³⁰ Si	1.5 ⁽²⁾	1.5 ⁽⁴⁾

Ne and O burning (SNe) e.g. Henkel, Podio

- (1) Asplund et al. 2009, ARA&A, 47, 481
- (2) Lodders, 2003, ApJ 591, 1220,
- (3) Marty et al. 2011, Science 332, 1533
- (4) Wilson, 1999 Rep. Progress Phys. 62, 143
- (5) Chin et al, 1996, A&A 305, 960

Observed line ratios are combinations of:

- a) Elemental abundance ratios set by BB and local history of nucleosynthesis (star formation)
- b) Fractionation processes
- c) Excitation and radiative transfer effects (data interpretation)

CHALMERS UNIVERSITY OF TECHNOLOGY

Isotope fractionation processes

12C160 13C160 12C180 12C180

Self-shielding against photodissociation H₂: Watson (1973) CO: van Dishoeck & Black (1988) N₂: Heays et al. (2014)

CHALMERS UNIVERSITY OF TECHNOLOGY

Conditions in dark pre-stellar cores

Example: Barnard 68 FORS Team, 8.2m VLT Antu, ESO

Cold: $T \approx 5 - 15 \text{ K}$ Dense: $n(H_2) \sim 1e5-7 \text{ cm}^{-3}$ Dark: $A_v > 10 \text{ mag}$ > CO etc. frozen on dust > $N_2 (N_2H^+)$ still in gas > High atomic D/H Disequilibrium chemistry

Gas-grain interaction

Energetic photon interactions

CHALMERS /ERSITY OF TECHNOLOGY

photodissociation

H₂: Watson (1973)

N₂: Heavs et al. (2014)

Nuclear spin type dependence

- Energy difference btw ortho () and para () H_2
- At low T, o-H₂/p-H₂ should decrease
- o-H₂ can overcome reaction barriers

CHALMERS

Eva Wirström Fractionation in Dark Clouds

CHALMERS UNIVERSITY OF TECHNOLOGY

Eva Wirström Fractionation in Dark Clouds

Observed ¹⁴N/¹⁵N

Protosolar ratio: ~440 (Marty et al. 2011)

Most primitive reservoirs enriched in ¹⁵N

Interstellar ratios: wide range

Mumma & Charnley (2011) with NH₃ addition from Bockeleé-Morvan et al. (2015)

¹⁴N/¹⁵N observations in dark cores

Hily-Blant P, et al. (2010). Bizzocchi L, et al. (2013). Milam, S. & Charnley, S. (2012). Gerin M, et al. (2009). Hily-Blant P, et al. (2013). Ikeda M, et al. (2002). Lis D.C, et al. (2010). Cordiner et al. In prep. Tennekes P.P., et al. (2006). Daniel et al. (2013). Wampfler S, et al. (2014). Adande et al. in prep.

Summary in Wirström et al., IAU XXIX General Assembly proc. Astronomy in Focus (2016)

¹⁴N/¹⁵N observations in dark cores

Hily-Blant P, et al. (2010). Bizzocchi L, et al. (2013). Milam, S. & Charnley, S. (2012). Gerin M, et al. (2009). Hily-Blant P, et al. (2013). Ikeda M, et al. (2002). Lis D.C, et al. (2010). Cordiner et al. In prep. Tennekes P.P., et al. (2006). Daniel et al. (2013). Wampfler S, et al. (2014). Adande et al. in prep.

Summary in Wirström et al., IAU XXIX General Assembly proc. Astronomy in Focus (2016)

Reaction	f(B,m) (10 K)	$\frac{\Delta E_0}{k}$ (K)	<u>К</u> (10 К)
$N^{15}N + HN_2^+ \rightleftharpoons N_2 + H^{15}NN^+$	0.494	10.7	1.44
$N^{15}N + HN_2^+ \rightleftharpoons N_2 + HN^{15}N^+$	0.499	2.25	0.63
$^{15}N^+ + N_2 \rightleftharpoons N^+ + N^{15}N$	1.959	28.3	33.2
$^{15}N^+ + NO \rightleftharpoons N^+ + {}^{15}NO$	0.979	24.3	11.1
$^{15}N + CNC^{+} \rightleftharpoons N + C^{15}NC^{+}$	0.938	36.4	35.7
$^{15}N + HN_2^+ \rightleftharpoons N + H^{15}NN^+$	0.968	36.1	35.8
$^{15}N + HN_2^+ \rightleftharpoons N + HN^{15}N^+$	0.977	27.7	15.6
$^{15}N + HCNH^{+} \Rightarrow N + HC^{15}NH^{+}$	0.968	35.9	35.1

Terzieva & Herbst (2000)

 Fractionation effect too minor to be detectable

Rodgers & Charnley (2008a,b)

- → High density (1e6 cm⁻³),
 CO depletion, and
 low temperature (10 K)
 → ¹⁴N/¹⁵N ≥ 50
 - Main ¹⁵N pool: initially molecular (and atomic?)

Rodgers & Charnley (2008a,b)

- → High density (1e6 cm⁻³),
 CO depletion, and
 low temperature (10 K)
 → ¹⁴N/¹⁵N ≥ 50
 - Main ¹⁵N pool: initially molecular (and atomic?)
 - Separate ¹⁵N routes for Nitriles and Amines
- → different fract. timescales

Wirström et al. (2012)

 $N^+ + o-H_2 \longrightarrow NH^+ + H$

- Effective at low T, but rate overestimated (T dep.) (Le Bourlot, 1991; Dislaire et al., 2012)
 - Iow o-H₂ suppress ¹⁵N fractionation in NH₃
 - No effect on nitriles
 - More pronounced difference btw Nitriles and Amines

(also Hily-Blant et al., 2013)

N fractionation model results (before 2015)

THE ASTROPHYSICAL JOURNAL LETTERS, 757:L11 (5pp), 2012 September 20

WIRSTRÖM ET AL.

Figure 2. Left panel: time evolution of the nitrogen chemistry in dense cores, compared to CO and o-H2. Crucial times for the ¹⁵N fractionation in nitrogen hydrides

Roueff et al. (2015)

- Updated reaction rates based on ZPE's
 - → significant barriers in reactions suppress ¹⁵N fractionation
- Demonstrates coupling btw N, C, and H fractionation

Wirström et al. (2016, in prep)

- Roueff'15 N fractionation rates
- Updated N-chemistry (Wakelam, 2013)
- Including time-dependent H₂ OPR and freeze-out!

The N₂H⁺ problem **Observations** dark cores 1400 protostars high-mass SF cores high-mass protostellar objects 1200 ultracompact HII regions ¹⁴N₃H⁺ / ¹⁵N¹⁴NH⁺ 10005 N¹⁵NH⁺/¹⁵NNH⁺ >1 800 600 Protosolar 400 Earth 200

Bizzocchi L, et al. (2013). Daniel et al. (2013). Cordiner et al. in prep. Massive SF sources: Fontani et al. (2015).

Models

- Wirström et al (2012): ¹⁴N/¹⁵N in N₂H⁺=100-300, N¹⁵NH⁺/¹⁵NNH⁺>1
- Roueff et al (2015): Both N₂H⁺
 ¹⁴N/¹⁵N ratios ~ elemental
- Dore et al (2016, subm): Incl. (optimistic) fractionation to ¹⁵N₂ and ¹⁵N₂H⁺
 - → Even lower ¹⁴N/¹⁵N in N₂H⁺

Bizzocchi L, et al. (2013). Daniel et al. (2013). Cordiner et al. in prep. Massive SF sources: Fontani et al. (2015).

Models

- Wirström et al (2012): ¹⁴N/¹⁵N in N₂H⁺=100-300, N¹⁵NH⁺/¹⁵NNH⁺>1
- Roueff et al (2015): Both N₂H⁺
 ¹⁴N/¹⁵N ratios ~ elemental
- Dore et al (2016, subm): Incl.

Summary

- Disequilibrium ion-molecule chemistry under cold, dense cloud conditions lead to different ¹⁵N fractions in nitriles and amines, in agreement with observations.
- A time-dependent H_2 OPR lead to high ¹⁴N/¹⁵N ratios in amines.
- New estimated rates for some of the relevant isotopic exchange reactions (Roeuff et al. 2015) suppress ¹⁵N enhancements – Barriers need to be re-evaluated for range of interaction geometries?
- All current models fail to reproduce low observed ¹⁵N in N₂H⁺ in dark clouds – Need to be addressed
- Spectroscopy available for doubly ¹⁵N substituted N₂H⁺ observations might provide further constraints
- Observations of ¹⁵N fractionation in NH₃ and N₂ proxys in dark cores are complicated and scarce – need substantial sample of dark cores are crucial to obtain a complete picture of fractionation chemistry

CHALMERS UNIVERSITY OF TECHNOLOGY

Collaborators: S. Charnley, M. Cordiner, S. Milam, and G. Adande – NASA Goddard SFC L. Bizzocchi – MPE, Garching L. Dore – Università di Bologna

> Funding by Swedish National Space Board and NASA's Origins of Solar Systems Program