Deuteration around the ultracompact HII region Mon R2

Sandra Patricia Treviño-Morales

P. Pilleri, A. Fuente, Á. Sánchez-Monge, C. Kramer, E. Roueff,
M. González-García, J. Cernicharo, M. Gerin, J. R. Goicoechea,
J. Pety, O. Berné, V. Ossenkopf, D. Ginard, S. García-Burillo, J.
R. Rizzo, and S. Viti.

Outline

Introduction

HII regions and PDRs Monoceros R2

Deuterated molecules

Observations General results Deuterated molecules

Summary

HII region and Photon-Dominated Region (PDR) system

A massive star (O & B type) radiates enough UV photons with energies E > 13.6 eV that ionize the surrounding gas and generate an HII region

... radiates **photons** with energies **6** < **E** < **13.6** eV that **dissociate H**² and **CO** molecules and generate a PDR (phodon-dominated region).

HII region and Photon-Dominated Region (PDR) system

A massive star (O & B type) radiates enough UV photons with energies E > 13.6 eV that ionize the surrounding gas and generate an HII region

... radiates **photons** with energies **6** < **E** < **13.6** eV that **dissociate** H₂ and **CO** molecules and generate a **PDR (phodon-dominated region)**.

- Link between HII region and molecular cloud
- Chemistry dominated by *FUV photons*Structure (chemistry/physics) determined by

n, **gas density** G₀, **incident flux**

 $\begin{array}{ll} G_0 \text{, incident flux:} & \text{from 1.7 (interstellar radiation field)} \\ & \text{to 10}^6 \text{ (close to high-mass stars)} \\ \text{with } G_0 \approx 1.6 \cdot 10^{-3} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ (Habing 1968)} \end{array}$

Hollenbach & Tielens (1997)

HII region and Photon-Dominated Region (PDR) system

Adapted from Hollenbach & Tielens (1997)

Image courtesy of B. Sánchez-Monge and R. Delgado

October 2016 4/18

... where to study a HII region and PDR system?

S. P. Treviño-Morales

ICMM Deuteration around the UC HII region Mon R2

October 2016 5/18

Carpenter (2000); Carpenter & Hodapp (2008)

The Monoceros molecular cloud (at 830 pc) contains several sites of active star formation

Monoceros R2 is the most massive and prominent cluster:

- ... rich cluster with 371 objects, including massive (*B-type*) stars
- ... large mass reservoir, with a total mass of 10^4 - $10^5 M_{\odot}$
- ... ultracompact HII region, with a cometary shape
- ... series of PDRs with different densities and incident radiation fields

Monoceros R2 cloud contains:

... *hot* (ionized gas) *bubbles*

Monoceros R2

Monoceros R2 cloud contains: ... hot (ionized gas) bubbles ... large-scale *filamentary* structure converging in a central hub

Monoceros R2 cloud contains: ... hot (ionized gas) bubbles ... large-scale filamentary structure converging in a central hub

New IRAM 30m data (projects: 027-14, 035-15 and D03-16; PI: Treviño-Morales) allowed us to perform a dynamical and stability study of the filamentary structure

Monoceros R2 core contains:

- ... cluster of *IR young stars*
- ... cometary ultracompact HII region
- ... **PDRs** irradiated by different UV fields: **IF** with $G_0 \approx 10^5$ and **MP2** with $G_0 \approx 10^2$
- ... extreme physical conditions (density and temperature)

Observations

- Radio Recombination Lines
- · Ionic species
- · Sulphurated molecules
- Complex molecules
- · Hydrocarbons
- Nitrogenated species
- Deuterated molecules

 \approx 60 different species grouped in *families*

- Radio Recombination Lines
- · Ionic species
- · Sulphurated molecules
- Complex molecules
- · Hydrocarbons
- Nitrogenated species
- Deuterated molecules

- Radio Recombination Lines
- · Ionic species
- · Sulphurated molecules
- Complex molecules
- · Hydrocarbons
- Nitrogenated species
- Deuterated molecules

- Radio Recombination Lines
- · Ionic species
- Sulphurated molecules
- Complex molecules
- · Hydrocarbons
- Nitrogenated species
- · Deuterated molecules

0.3 0.4

- **Radio Recombination Lines**
- **Ionic species**
- Sulphurated molecules •
- **Complex molecules** ٠
- Hydrocarbons •
- Nitrogenated species •
- Deuterated molecules

- Radio Recombination Lines
- Ionic species
- Sulphurated molecules
- Complex molecules
- · Hydrocarbons
- Nitrogenated species
- Deuterated molecules

- **Radio Recombination Lines**
- **Ionic species**
- Sulphurated molecules •
- **Complex molecules**
- Hydrocarbons
- Nitrogenated species •
- **Deuterated molecules**

... chemical segregation

- ... tracers of PDRs with different physical properties
- ... kinematical properties for each molecular family
 - ... if you want to know more about this, *please, talk to me!*

- Radio Recombination Lines
- · Ionic species
- · Sulphurated molecules
- Complex molecules
- · Hydrocarbons
- Nitrogenated species
- Deuterated molecules

... chemical segregation

- ... tracers of PDRs with different physical properties
- ... kinematical properties for each molecular family
 - ... if you want to know more about this, *please, talk to me!*

... chemical abundances towards the two PDRs

- Radio Recombination Lines
- · Ionic species
- Sulphurated molecules
- Complex molecules
- · Hydrocarbons
- Nitrogenated species
- Deuterated molecules

... chemical segregation

- ... tracers of PDRs with different physical properties
- ... kinematical properties for each molecular family
 - ... if you want to know more about this, *please, talk to me!*

... chemical abundances towards the two PDRs

Why are important the deuterated molecules?

It is thought that all the deuterium found in nature was produced during the Big Bang (elemental abundance of **10**-5)

... but D_{frac} in star forming regions has been mesured to be ≈ 0.1 (Busquet et al 2010; Fontani et al 2011)

Deuteration in *cold clouds* ($T_K < 20$ K) occurs via $H_3^+ + HD \rightarrow H_2D^+ + H_2$ (e.g. in pre-stellar cores) For $T_K > 30$ K, this reaction is very inefficient

Deuteration in *warm regions* ($30 < T_{\kappa} < 100$ K) has been proposed to proceed via the ion reactions

 $CH_3^+ + HD \rightarrow CH_2D^+ + H_2$ $C_2H_2^+ + HD \rightarrow C_2HD^+ + H_2$

Roueff et al (2007)

Deuteration in *hot cores* ($T_k > 100$ K) is originated by the *evaporation of ice dust mantles* The deuteration is a fossil of the pre-stellar phase (Parise et al 2004)

Parise et al (2007) detected DCN, DCO⁺ and HDCO in the Orion Bar.

 $D_{\text{frac}}(\text{HCN}) \rightarrow 0.01$ $D_{\text{frac}}(\text{HCO}^+) \rightarrow 0.0006$ $D_{\text{frac}}(\text{H}_2\text{CO}) \rightarrow 0.006$

Decycinaterpriet warm regions is $(30 \text{ as T}_{he} 100 \text{ MS})$ as the 100 MS has been properly the properly of the prior of the prio

DCN, DNC, DCO⁺, D₂CO, CCD, HDCO, NH₂D and N_2D^+ have been detected in **MonR2**

	IF		М	P2
Species	Т _{rot} (К)	N (10 ¹² cm ⁻²)	T _{rot} (К)	N (10 ¹² cm ⁻²)
C ₂ D	19	3.1	20	9.6
DCN	44	2.1	12	1.4
DNC	45	0.1	12	0.5
DCO+	19	0.1	31	0.3
D ₂ CO	38	<23.7	38	2.5
HDCO	38	0.4	49	2.3
NH ₂ D	19	0.4	19	0.9
N ₂ D ⁺			19	<0.2

Deuteration is high in both PDRs suggesting

... deuteration comes from dense warm clumps instead of the most exposed PDR layers.

DCN, DNC, DCO⁺, D₂CO, CCD, HDCO, NH₂D and N_2D^+ have been detected in **MonR2**

	IF		М	Ρ2
Species	T _{rot} (К)	N (10 ¹² cm ⁻²)	Т_{rot} (К)	N (10 ¹² cm ⁻²)
C ₂ D	19	3.1	20	9.6
DCN	44	2.1	12	1.4
DNC	45	0.1	12	0.5
DCO+	19	0.1	31	0.3
D ₂ CO	38	<23.7	38	2.5
HDCO	38	0.4	49	2.3
NH ₂ D	19	0.4	19	0.9
N ₂ D ⁺			19	<0.2

Deuterium fractionation (D_{frac})

Ratio	IF	MP2
HCN/HNC	11.36	2.33
DCN/HCN	0.02	0.03
DNC/HNC	0.01	0.02
C_2D/C_2H	0.02	0.08
HDCO/H ₂ CO	0.01	0.01
DCO ⁺ /HCO ⁺	0.002	0.005
D_2CO/H_2CO	0.02	0.05
N_2D^+/N_2H_+	•••	<0.05
NH_2D/NH_3	0.04	0.06

Deuteration is high in both PDRs suggesting

... deuteration comes from dense warm clumps instead of the most exposed PDR layers.

		Warm regions		Cold regions		Hot regions	
	Mor IF	n R2 ^a MP2	Ori Bar ^b (Clump 3)	TMC1 ^c	Barnard 1 ^d	IRAS 16293e	Ori KL ^f
H ¹³ CN/HN ¹³ C DCN/HCN DNC/HNC DCO ⁺ /HCO ⁺ C ₂ D/C ₂ H HDCO/H ₂ CO D ₂ CO/HDCO	$ \begin{array}{r} 10\\ 0.02\\ 0.01\\ 0.2 \times 10^{-2}\\ 0.02\\ \hline 0.01\\ < 38.47 \end{array} $	$\begin{array}{r} 2.33 \\ 0.03 \\ 0.02 \\ 0.5 \times 10^{-2} \\ 0.08 \\ 0.01 \\ 1.00 \end{array}$	$\begin{array}{c} 2.5 \\ 0.01 \\ < 0.01 \\ 0.6 \times 10^{-3} \\ < 0.11 \\ 0.6 \times 10^{-2} \\ \dots \end{array}$	0.9–1.5 0.008 0.01 0.01 0.03–0.06 0.05	1.04 0.025 0.11 0.14 0.40	0.01 0.7 × 10 ⁻² 0.15 0.3	 0.14 0.021
N_2D^+/N_2H^+ NH_2D/NH_3	0.015° 0.39×10^{-2}	$< 5.0 \times 10^{-2}$ 0.6×10^{-2}		0.08 0.02	0.35 0.63		< 0.30 0.062

(a) Treviño-Morales et al (2014). (b) Parise et al. (2009). (c) Turner (2001). (d) Daniel et al. (2013); Gerin et al. (2001), Marcelino et al. 2005. (e) Lis et al. (2001); Loinard et al. (2000, 2001); Tiné et al. (2000). (f) Turner 1990.

D_{frac} in MonR2 similar to the Orion Bar

In MonR2 *deuteration* seems more *efficient for HCN, HNC* and *C*₂*H*

Different [HDCO]/[H₂CO] and [DCO⁺]/[HCO⁺] values suggest ... *different deuteration processes at low and high temperatures*

[HDCO]/[H₂CO] suggest... *ice-mantle-evaporation* chemistry is *not dominant* in MonR2

		Model A
Parameter		
T _k	Temperature	50 K
n _H	H density	$2 \times 10^{6} \text{ cm}^{-3}$
He/H	Helium abundance	0.1
O/H	Oxygen abundance	$1.8 imes 10^{-4}$
C/H	Carbon abundance	7.3×10^{-5}
N/H	Nitrogen abundance	2.1×10^{-5}
S/H	Sulfur abundance	8×10^{-8}
Fe/H	Iron abundance	2×10^{-8}
D/H	Deuterium fraction	1.5×10^{-5}
ortho/para ratio	OPR	1×10^{-2}
ζ	Cosmic ray ionization rate	$5 \times 10^{-17} \text{ s}^{-1}$

<u>Chemical model by Roueff et al (2007)</u>

Meudon gas-phase network (Gerlich et al 2002, Roueff et al 2005)

- 214 species (including deuterated compounds)
- more than 3300 chemical reactions

For **MonR2** we build a grid of models with

- temperature of **50 K**
- two densities: $n_{H} = 3 \times 10^{5} \text{ cm}^{-3}$ and $2 \times 10^{6} \text{ cm}^{-3}$
- ortho/para = 0.3 (equilibrium value at 50 K), 0.01, 0.001 no big differences for t < 1 Myr

		Model A		Model B	Mo	del C		Model D
Parameter								
T _k	Temperature	50 K		50 K	50	0 K		50 K
n _H	H density	$2 \times 10^6 \text{ cm}^{-3}$	3	$\times 10^{5} \text{ cm}^{-3}$	$2 \times 10^{\circ}$) ⁶ cm ⁻³		3×10^5 cm ⁻³
He/H	Helium abundance	0.1		0.1	0	0.1		0.1
O/H	Oxygen abundance	1.8×10^{-4}	:	1.8×10^{-4}	3.3 >	< 10 ⁻⁴		3.3×10^{-4}
C/H	Carbon abundance	7.3×10^{-5}		7.3 × 10 ^{−5}	1.3>	< 10 ⁻⁴		1.3×10^{-4}
N/H	Nitrogen abundance	2.1×10^{-5}	1	2.1×10^{-5}	7.5 >	< 10 ⁻⁵		7.5×10^{-5}
S/H	Sulfur abundance	8×10^{-8}		8×10^{-8}	1.8>	< 10 ⁻⁵		1.8×10^{-5}
Fe/H	Iron abundance	2×10^{-8}		2×10^{-8}	2 ×	10 ⁻⁸		2×10^{-8}
D/H	Deuterium fraction	1.5×10^{-5}		1.5×10^{-5}	1.5>	< 10 ⁻⁵		1.5×10^{-5}
ortho/para ratio	OPR	1×10^{-2}		1×10^{-2}	$1 \times$	10-2		1×10^{-2}
ζ	Cosmic ray ionization rate	$5 \times 10^{-17} \text{ s}^{-1}$	5	$\times 10^{-17} \text{ s}^{-1}$	5×10^{-5}	0^{-17} s^{-1}		$5 \times 10^{-17} \text{ s}^{-1}$
			Model E				Model F	
Parameter		Phase 1		Phase 2 ^a	Pha	ase 1		Phase 2 ^b
T _k	Temperature	15 K		50 K	15	5 K		50 K
n _H	H density	$2 \times 10^{6} \text{ cm}^{-3}$	2	$ imes 10^{6} \text{ cm}^{-3}$	2×10) ⁶ cm ⁻³		$2 \times 10^{6} \text{ cm}^{-3}$
He/H	Helium abundance	0.1			0	0.1		
O/H	Oxygen abundance	1.8×10^{-4}			1.8>	< 10 ⁻⁴		14)
C/H	Carbon abundance	7.3×10^{-5}			7.3 >	< 10 ⁻⁵		
N/H	Nitrogen abundance	7.5×10^{-5}			7.5 >	< 10 ⁻⁵		al (
S/H	Sulfur abundance	2.1×10^{-5}			2.1>	< 10 ⁻⁵		et
Fe/H	Iron abundance	8×10^{-8}			8 ×	10-8		es
D/H	Deuterium fraction	2×10^{-8}			2 ×	10-8		Ora
ortho/para ratio	OPR	1×10^{-4}		1×10^{-2}	$1 \times$	10 ⁻⁴		1 × 10 ⁻² Ž
ζ	Cosmic ray ionization rate	$5 \times 10^{-17} \text{ s}^{-1}$	5	× 10 ⁻¹⁷ s ⁻¹	5×10^{-5}) ⁻¹⁷ s ⁻¹		$5 \times 10^{-17} \text{ s}^{-10}$
								Ĕ

		Model A
Parameter		
T _k	Temperature	50 K
n _H	H density	$2 \times 10^{6} \text{ cm}^{-3}$
He/H	Helium abundance	0.1
O/H	Oxygen abundance	1.8×10^{-4}
C/H	Carbon abundance	7.3×10^{-5}
N/H	Nitrogen abundance	2.1×10^{-5}
S/H	Sulfur abundance	8×10^{-8}
Fe/H	Iron abundance	2×10^{-8}
D/H	Deuterium fraction	1.5×10^{-5}
ortho/para ratio	OPR	1×10^{-2}
ζ	Cosmic ray ionization rate	$5 \times 10^{-17} \text{ s}^{-1}$

Chemical model by Roueff et al (2007)

Meudon gas-phase network (Gerlich et al 2002, Roueff et al 2005)

- 214 species (including deuterated compounds)
- more than 3300 chemical reactions

For MonR2 we build a grid of models with

- temperature of 50 K
- densities n_H = **2 x 10⁶ cm**⁻³
- ortho/para = 0.01

$D_{\rm frac} \approx 0.01$	for HNC, HCN, C ₂ H, H ₂ CO
D _{frac} < 0.001	for HCO ⁺ , N ₂ H ⁺

... values consistent with gas-phase model predictions for a time of ≈ 0.1 Myr (i.e. age of UC HII regions)

Deuteration in warm regions seems to proceed via the gas-phase reactions

 $CH_3^+ + HD \rightarrow CH_2D^+ + H_2$ $C_2H_2^+ + HD \rightarrow C_2HD^+ + H_2$

Deuterium chemistry is a good chemical clock. D_{frac} values of different molecules (eg HCN, HNC and C₂H), with long chemical scale-times, are necessary to obtain accurate age estimates

 \bullet \circ

Take-home messages

High deuteration levels in warm regions

Ice-mantle-evaporation chemistry is not dominant in MonR2

Deuteration consistent with gas-phase chemistry

D_{frac} is good chemical clock

Thanks for your attention

Future work

Characterization of filaments:

- Dynamical study
- Comparison with simulations

Chemical models:

- Detailed study of all the molecular families
- PDR time-dependent chemical model applied to all the species

Other PDRs?

- Expand the study to other regions
- Next target: GGD14
- Observations already on-going: spectral survey small maps