Fractionation in Young Stellar Objects: Can the fractionation be used as chemical tracer of observed molecules ?

Vianney Taquet, Leiden Observatory "Fractionation in Space", Arcetri, 11/10/2016

(2016 (2016) Universiteit Leiden

rgensen

Chemical evolution in protostars

Fractionation of molecules observed around protostars (mostly) traces chemistry during prior stages \rightarrow need to follow the chemistry from dark clouds

Physical and astrochemical models

Astrochemical models are usually coupled with 1D/2D physical models to follow the chemical evolution from dark clouds to hot cores:

- **OD free-fall collapse:** Cazaux et al. (2011), Awad et al. (2014)
- 1D parametric collapse model + Radiative Transfer: Taquet et al. (2014)
- Hydrodynamic simulations: Aikawa et al. (2012), Wakelam et al. (2014), Furuya et al. (2016)

Hydrodynamical simulations used in Aikawa et al. (2012)

Physical and astrochemical models

- Gas phase chemical networks are usually based on KIDA/OSU/UMIST networks and extended
 - to include spin states of various species (H₂, H₃⁺, etc), deuterium exchange reactions (H₃⁺ H₂ system: Ugo et al. 2009; CH₃⁺ H₂: Roberts et al. 2000, 2004; etc)
 - deuterated counterparts of reactions involving hydrogenated species (scrambling assumption + exceptions, see Aikawa et al. 2012, Sipila et al. 2013, Albertsson et al. 2013)
- \rightarrow > 50 000 reactions, 2 000 species !
- Gas-grain chemical processes:
 - **2 phase:** Cazaux et al. (2011), Aikawa et al. (2012), Wakelam et al. (2014), Awad et al. (2014)
 - **3 phase:** Taquet et al. (2012, 2014), Furuya et al. (2015, 2016)

- Introduction
- Deuteration of ions in low-mass YSOs
- Deuteration of water and icy species in low-mass YSOs
- Deuteration of complex organic in low-mass YSOs
- Deuteration in massive YSOs

Ion deuteration around low-mass protostars

Observations show:

- 1) Decrease of HCO⁺ and N₂H⁺ deuterations with the evolutionary stage
- 2) Increase of deuteration with the distance from the protostar

Data from Jørgensen et al. (2004), Emprechtinger et al. (2009), Tobin et al. (2011)

Deuteration of ions around protostars

- Introduction
- Deuteration of ions in low-mass YSOs
- Deuteration of water and icy species in low-mass YSOs
- Deuteration of complex organic in low-mass YSOs
- Deuteration in massive YSOs

Deuteration in low-mass YSOs

Deuteration observed towards IRAS 16293-2422

Deuteration in low-mass YSOs

HCN: van Dishoeck et al. (1995); H₂S: van Dishoeck et al. (1995), Vastel et al. (2003); NH₃: van Dishoeck et al. (1995), Loinard et al. (2001), van der Tak et al. (2002); H₂CO: Ceccarelli et al. (1998, 2001); CH₃OH: Parise et al. (2004, 2006)

Deuteration evolution in low-mass YSOs

Unlike ions, neutral species do not show any trend with evolutionary stage (some exceptions, see E. Bianchi's talk)

HCO⁺: Jørgensen et al. (2004); N₂H⁺: Emprechtinger et al. (2009), Tobin et al. (2011); HCN: Roberts et al. (2007); H₂CO: Parise et al. (2006), Roberts et al. (2007); CH₃OH: Parise et al. (2006)

Evolution of gas phase deuteration in hot cores

Gas phase chemistry after ice evaporation is likely too slow to significantly alter the deuteration of most neutral species in protostellar envelopes

 \rightarrow deuteration of most neutral species observed in Class 0/Class I should be due to their formation at prior stage

Gas phase [D]/[H] in dark clouds

Main icy species are formed from sequential hydrogenation of O, N, C, CO on interstellar grains \rightarrow their deuteration depends on gas [D]/[H] at the prestellar stage

Water chemical network

Water and its deuterated isotopologues are formed through addition reactions from O, O_2 , and O_3 on ices

Experiments: 1) O+H: Dulieu+ (2010), Jing+ (2011); 2) O₂+H: Miyauchi+ (2008), Ioppolo+ (2008, 2010), Cuppen+ (2010); 3) O₃+H: Mokrane+ (2009), Romanzin+ (2011); 4) OH+H₂: Oba+ (2011), Lamberts+ (2014) **Calculations:** H₂O₂+H: Ellingson et al. (2007), Taquet et al. (2013); OH+H₂: Nguyen et al. (2011)

Methanol chemical network

Methanol and its deuterated isotopologues are formed through addition reactions from CO on ices...

Calculations: Woon (2002), Andersson+ (2011), Peters+ (2013), Rimola+ (2014)

Methanol chemical network

... But substitution and abstraction reactions are also very efficient ! → Increase of the methanol deuteration in ices

Calculations: Woon (2002), Andersson+ (2011), Peters+ (2013), Rimola+ (2014)

Deuterium fractionation in interstellar ices

Interstellar ices slowly form from translucent clouds to prestellar cores:

Impact of ice layering on the observed deuteration

Deuteration gradient in ices induces an increase of the water deuteration in the gas from the inner to the outer envelope:

- HDO/H₂O_{warm} \approx 0.1 1 %
- HDO/H₂O_{cold} \approx 10 %

 \rightarrow consistent with *Herschel* observations by Coutens et al. (2013)

HDO and D₂O only produced at the surface of ices while H₂O mostly in the inner part \rightarrow explain [D₂O]/[HDO] = 7 [HDO]/[H₂O]

Furuya et al. (2016); see also Aikawa et al. (2012), Taquet et al. (2014), Wakelam et al. (2014)

H/D exchange in warm ices

Models presented so far assume that deuteration of cold ices remains unchanged until their evaporation at T > 100 K... But H/D exchanges can occur in warm ices !

 $CH_3OD + H_2O \rightleftharpoons CH_3OH + HDO$; Ea = 4100 K (Ratajczak et al. 2009, Faure et al. 2015) H₂O + D₂O \rightleftharpoons 2 HDO; Ea = 3840 K (Lamberts et al. 2015)

- Introduction
- Deuteration of ions in low-mass YSOs
- Deuteration of water and icy species in low-mass YSOs
- Deuteration of complex organic in low-mass YSOs
- Deuteration in massive YSOs

Deuteration in low-mass YSOs

Deuteration observed towards IRAS 16293-2422

HCOOCH₃: Demyk et al. (2010); HCOCH₂OH: Jørgensen et al. (2016); CH₃OCH₃: Richard et al. (2013); CH₃CN: C. Kahane (priv. com.); HNCO and NH₂CHO: Coutens et al. (2016); NH: Bacmann et al. (2010)

Deuteration of O-bearing complex organics

Deuteration should allow us to distinguish between gas phase and grain surface formations \rightarrow need to have consistent D/H for all molecules

Deuteration of O-bearing complex organics

Deuteration should allow us to distinguish between gas phase and grain surface formations \rightarrow need to have consistent D/H for all molecules

Deuteration (%)	Predictions by Taquet+ (2014)	Observations	Telescope	Reference
HDCO	4.1	15	IRAM 30m	Parise et al. (2006)
CH ₂ DOH	5.5	37	IRAM 30m	Parise et al. (2006)
CH₃OD	3.5	1.8	IRAM 30m	Parise et al. (2006)
DCOOH	2.3	/	/	/
HCOOD	1.0	/	/	/
CH ₂ DOCH ₃	20	15	IRAM 30m	Richard et al. (2013)
DCOOCH ₃	9.2	6	IRAM 30m	Demyk et al. (2010)
HCOOCH ₂ D	21	/	/	/
DCOCH ₂ OH	9.2	5.2	ALMA	Jørgensen et al. (2016)
HCOCHDOH	13.1	10	ALMA	Jørgensen et al. (2016)
HCOCH ₂ OD	13.4	4.7	ALMA	Jørgensen et al. (2016)

See A. Coutens's talk for deuteration of N-bearing COMs !

- Introduction
- Deuteration of ions in low-mass YSOs
- Deuteration of water and icy species in low-mass YSOs
- Deuteration of complex organic in low-mass YSOs
- Deuteration in massive YSOs

Deuteration observed towards IRAS 16293-2422, Orion KL, and Sgr B2

Orion KL: Peng et al. (2012), Neill et al. (2013), Favre et al. (2014); Sgr B2: Jacq et al. (1999), Comito et al. (2003), Belloche et al. (2013)

Evolution of the [CH₂DOH]/[CH₃OD] with the protostellar luminosity

Low-mass: Parise et al. (2006); Intermediate-mass: Ratajczak et al. (2011); High-mass: Jacq et al. (1990), Ratajczak et al. (2011)

Evolution of the [CH₂DOH]/[CH₃OD] with the protostellar luminosity

Low-mass: Parise et al. (2006); Intermediate-mass: Ratajczak et al. (2011); High-mass: Jacq et al. (1990), Ratajczak et al. (2011)

High deuteration of NH₃ (and of CH₃OH) has been observed towards other massive protostars:

- Low deuteration observed towards Orion KL and Sgr B2 could be specific

 \rightarrow close to bright older sources that could have warmed up the cloud to T > 20 K

- T > 20 K \rightarrow [D]/[H] < 1 % \rightarrow abstraction reactions are not efficient \rightarrow [CH₂DOH]/[CH₃OD] = 1

Correlation between [CH₂DOH]/[CH₃OD] and [CH₂DOH]/[CH₃OH] ?

Conclusions

- Ion deuteration is sensitive to current physical conditions
 → tracer of evolutionary stage
- Deuteration of neutral species observed towards low-mass YSOs: tracer of their past formation in dark clouds on ices
- Deuteration could be useful to constrain formation mechanisms of COMs
 → need for new models and consistent observations
- Massive protostars show different chemical behaviour for neutral species than low-mass YSOs: due to warmer prestellar stage or more active warm chemistry ?