

Fractionation of isotopes in space: from the solar system to galaxies

Deuterium fractionation and kinematics in the Taurus molecular cloud

Anna Punanova¹, Paola Caselli¹, Jaime Pineda¹, Andy Pon²

¹Max-Planck-Institut für extraterrestrische Physik, Garching, Germany ²Department of Physics and Astronomy, The University of Western Ontario, London, Canada

Florence, Italy 11 October 2016

Deuterium fractionation

 $H_{3^{+}} + HD \leftrightarrow H_{2}D^{+} + H_{2} + 230 K$ (Millar et al. 1989) T = 5–20 K => a lot of $H_{2}D^{+}$

 $H_{3^+} + A \rightarrow AH^+ + H_2$ (Herbst & Klemperer 1973)

Mainly CO and O destroy H_2D^+ and H_3^+

But they are frozen onto the dust grains

$$H_2D^+ + N_2 \rightarrow N_2D^+ + H_2$$

$$H_3^+ + N_2 \rightarrow N_2 H^+ + H_2$$

Major gas-phase tracers in dense cores

Major gas-phase tracers in starless cores

L1495 in the Taurus molecular cloud

The black solid line is the lowest C¹⁸O(1-0) contour, the red contours – N₂H⁺(1-0). The stars – YSOs from Rebull et al. (2010).

L1495 in the Taurus molecular cloud

L1495 in the Taurus molecular cloud

The black solid line is the lowest C¹⁸O(1-0) contour, the red contours – N₂H+(1-0). The stars – YSOs from Rebull et al. (2010).

Starless core L1495-16

Left: $N_2D^+(2-1)$ (black) trace denser gas than $N_2H^+(1-0)$ (white), their emission peaks mismatch; Right: $H^{13}CO^+(1-0)$ (white) trace extended filament gas and partially depleted at the $N_2D^+(2-1)$ emission peak (black).

Velocity dispersion in the core L1495-16

Local V_{LSR} gradients

Specific angular momentum

 $N_2D^+(2-1)$ vs $N_2H^+(1-0)$

 $N_2D^+(2-1)$ vs DCO⁺(2-1)

Deuterium fraction

 $N(N_2D^+)/N(N_2H^+)$

MPE

 $N(DCO^{+})/N(HCO^{+})$

Anna Punanova

Deuterium fraction

MPE

Compare Taurus and Ophiuchus

Compare Taurus and Ophiuchus

 R_{D}

Compare Taurus and Ophiuchus

Summary

- Deuterium fraction in N_2H^+ is higher than in HCO+
- R_D in Taurus is lower and less spread than in Ophiuchus
- High deuterium fraction (R_D>0.2) is present only in regions dominated by thermal motions
- Cores close to YSOs (within 1.5 beamsize distance) have small deuterium fractions (R_D <0.12)
- Next step: connection core cloud scale and measure CO depletion towards the cores in L1495

Thank you for your attention!