

VICTOR S. MAGALHÃES*, PIERRE HILY-BLANT, ALEXANDRE FAURE, FRANÇOIS LIQUE, C. M. WALMSLEY, FABIEN DANIEL

STUDY OF HYPERFINE ANOMALIES AND CARBON FRACTIONATION IN HCN

WHY HCN?

- Goal: understand N heritage from the Protosolar Nebula.
- Tool: Isotopic ratios.
- Molecule of choice: HCN
 - Abundant, easy to detect, formation is understood.
- Problem: r(HCN) >> 1 in usual ISM conditions.

THE DOUBLE ISOTOPOLOGUE METHOD

 $\frac{\mathrm{HCN}}{\mathrm{HC}^{15}\mathrm{N}} \approx \frac{\mathrm{H}^{13}\mathrm{CN}}{\mathrm{HC}^{15}\mathrm{N}} \times \frac{^{12}\mathrm{C}}{^{13}\mathrm{C}} , \text{ with } \frac{^{12}\mathrm{C}}{^{13}\mathrm{C}} = 70$ $_{\mathrm{e.g.\,Hily-Blant\,\,et\,\,al.\,\,2013}}$

Caveat: Chemical fractionation plays a role?

- From chemical modelling: $H^{12}CN/H^{13}CN = 93 - 168$ (e.g. Roueff. et al. 2015).
- Solution: Measure N(HCN) directly.
 - how: Use the information contained in the HyperFine Anomalies (HFA) of HCN rotational transitions.

WHAT IS AN HCN HF ANOMALY

HF components line ratios inconsistent with a single excitation temperature (T_{ex}).

HFA are a long standing problem in millimetre astronomy (Kwan & Scoville 1974).

WHAT IS AN HCN HF ANOMALY

HF components line ratios inconsistent with a single excitation temperature (T_{ex}).

HFA are a long standing problem in millimetre astronomy (Kwan & Scoville 1974).

WHAT IS AN HCN HF ANOMALY

HF components line ratios inconsistent with a single excitation temperature (T_{ex}).

 HFA are a long standing problem in millimetre astronomy (Kwan & Scoville 1974).

- Where:
 - Dense cores (e.g. Sohn et al. 2007), HII regions (e.g. Gottlieb et al. 1975).
- Early theories:
 - Self-absorption creates HFA (Langer et al. 1978, Walmsley et al. 1982, Cernicharo et al. 1984)
 - ▶ HF Overlap for transitions with J_{up} ≥ 2 (Guilloteau & Baudry et al. 1981)
 - Collisional selection of HF levels + physical and kinematic structure (Gottlieb et al. 1975)

Where:

Dense cores (e.g. Sohn et al. 2007), HII regions (e.g. Gottlieb et al. 1975).

- Early theories:
 - Self-absorption creates HFA (Langer et al. 1978, Walmsley et al. 1982, Cernicharo et al. 1984)
 - ► HF Overlap for transitions with $J_{up} \ge 2$ (Guilloteau & Baudry et al. 1981)
 - Collisional selection of HF levels + physical and kinematic structure (Gottlieb et al. 1975)

- Qualitatively understood by:
 - ▶ Gottlieb et al. 1975
 - Guilloteau & Baudry 1981
- Recent work by Mullins et al. 2016:
 - No source structure.
 - Approximated collisional coefficients.
 - Fit to TMC-1 spectra: not satisfactory

COMPLEMENTARY APPROACHES

- Qualitatively understor
 - Gottlieb et al. 1975
 - Guilloteau & Baudry 1981
- Recent work by Mullins et al. 2016:
 - No source structure.
 - Approximated collisional coefficients.
 - Fit to TMC-1 spectra: not satisfactory

HOW TO RECREATE HFA?

- Target: L1498 well studied PreStellar Core (e.g. Tafalla et al. 2004, Tafalla et al. 2006, Padovani et al. 2011)
- Tool: State of the art 1-D radiative transfer code (Daniel & Cernicharo 2008) Handling:
 - Collisional coefficients that treat HF levels independently.
 - Latest ab initio HCN HF collisional rates (Lique et al. 2016 in prep.).
 - Hyperfine overlap.
 - Complex physical structure, $(T_k(r), n(r), V(r), \sigma(r), X_{species}(r))$

- $T_k = 10 \text{ K}$ (Tafalla et al. 2006).
- o(r=∞) = 0.265 km/s (Tafalla et al. 2006)
- n(r): Fitting of Herschel/SPIRE
 @350 & 500 µm.
- Velocity + $\sigma(r=0)$: H¹³CN + HC¹⁵N spectra.
- σ(r) transition: HCN with fixed abundance.

- $T_k = 10 \text{ K}$ (Tafalla et al. 2006).
- σ(r=∞) = 0.265 km/s (Tafalla et al. 2006)
- n(r): Fitting of Herschel/SPIRE @350 & 500 μm.
- Velocity + $\sigma(r=0)$: H¹³CN + HC¹⁵N spectra.
- σ(r) transition: HCN with fixed abundance.

- $T_k = 10 \text{ K}$ (Tafalla et al. 2006).
- σ(r=∞) = 0.265 km/s (Tafalla et al. 2006)
- n(r): Fitting of Herschel/SPIRE @350 & 500 μm.
- Velocity + $\sigma(r=0)$: H¹³CN + HC¹⁵N spectra.
- σ(r) transition: HCN with fixed abundance.

$$\frac{N(r)}{N_{max}} = 2 \times \frac{\int \left(\frac{1}{1 + \frac{r}{r_0}\alpha} + \frac{n_0}{n_{ext}}\right) dr}{\int \left(\frac{1}{1 + \frac{r}{r_0}\alpha} + \frac{n_0}{n_{ext}}\right) dr|_{r=0}}$$

- n(r): Fitting of Herschel/SPIRE
 @350 & 500 μm.
- Velocity + $\sigma(r=0)$: H¹³CN + HC¹⁵N spectra.
- σ(r) transition: HCN with fixed abundance.

Parameter	This work Tafalla et al. 2004	
n ₀ (H ₂)	6.5x10 ⁻⁴ cm ⁻³	9.4x10⁻⁴cm⁻³
r _o	110''	75''
α	3.8	3.5
N(H ₂)	3.4x10 ²² cm ⁻²	3.4x10 ²² cm ⁻²

- $T_k = 10 \text{ K}$ (Tafalla et al. 2006).
- o(r=∞) = 0.265 km/s (Tafalla et al. 2006)
- n(r): Fitting of Herschel/SPIRE
 @350 & 500 µm.
- Velocity + $\sigma(r=0)$: H¹³CN + HC¹⁵N spectra.
- σ(r) transition: HCN with fixed abundance.

- $T_k = 10 \text{ K}$ (Tafalla et al. 2006).
- o(r=∞) = 0.265 km/s (Tafalla et al. 2006)
- n(r): Fitting of Herschel/SPIRE
 @350 & 500 µm.
- Velocity + $\sigma(r=0)$: H¹³CN + HC¹⁵N spectra.
- σ(r) transition: HCN with fixed abundance.

- > $T_k = 10 \text{ K}$ (Tafalla et al. 2006).
- o(r=∞) = 0.265 km/s (Tafalla et al. 2006)
- n(r): Fitting of Herschel/SPIRE
 @350 & 500 µm.
- Velocity + $\sigma(r=0)$: H¹³CN + HC¹⁵N spectra.

ο(r) transition: HCN with fixed abundance.

FOREGROUND LAYER

- Tafalla et al. 2006: ¹³CO component to the SW @ ~8.2 km/s.
- Also seen in our C¹⁸O spectra @ 8.1 km/s.
- HCN in diffuse medium?
 - Liszt & Lucas 2001
 - Very low T_{ex}

FOREGROUND LAYER

- Tafalla et al. 2006: ¹³CO component to the SW @ ~8.2 km/s.
- Also seen in our C¹⁸O spectra @ 8.1 km/s.
- HCN in diffuse medium?
 - Liszt & Lucas 2001
 - Very low T_{ex}

Very low T_{ex}

Modelled Physical Structure for L1498

N Л				<u> </u>	
	Species	Abundance (/H ₂) This work	Column density (cm ⁻²) This work	Abundance (/H ₂) Padovani (2011)	Column density (cm ⁻²) Padovani (2011)
	HCN	2.5±1.0x10 ⁻⁹	8.5±3.4x10 ¹³	3.92±0.96x10 ⁻⁹	1.24±0.18x10 ¹⁴
	H ¹³ CN	1.0x10 ⁻¹⁰	3.4x10 ¹²	5.76±1.41x10 ⁻¹¹	1.82±0.26x10 ¹²
	HC ¹⁵ N	1.5x10 ⁻¹¹	5.1x10 ¹¹		
		Radius (arc second	ls)	Radius (arc se	conds)

UNDERSTANDING THE EMERGING SPECTRA

- Modelled T_{ex} profiles analogous to a two slab model.
- Toy model to understand the emerging spectra:
 - two slabs colliding with two other slabs with the same T_{ex} and τ structure (Similar to: de Vries et al. 2005).

ANALYTICAL REASONING FOR THE ANOMALIES

From toy model:

$$\frac{\Delta T_b^{01}}{\Delta T_b^{11}} \approx \frac{J_{\nu}(T_{ex,B}^{01}) + (J_{\nu}(T_{ex,A}^{01}) - J_{\nu}(T_{ex,B}^{01}))e^{-\tau_B^{01}} - J_{\nu}(T_{CMB})}{J_{\nu}(T_{ex,B}^{11}) - J_{\nu}(T_{CMB})}$$

- From the radiative pumping: $T_{ex,A}^{01} > T_{ex,B}^{01} > T_{ex,B}^{11}$.
- Thus: $\Delta T_b^{01} > \Delta T_b^{11}$ if:
 - ► $T_{ex}^{11} < T_{ex}^{01}$

ANALYTICAL REASONING FOR THE ANOMALIES

- From toy model: $\frac{\Delta T_b^{01}}{\Delta T_b^{11}} \approx \frac{J_{\nu}(T_{ex,B}^{01}) + (J_{\nu}(T_{ex,A}^{01}) - J_{\nu}(T_{ex,B}^{01}))e^{-\tau_B^{01}} - J_{\nu}(T_{CMB})}{J_{\nu}(T_{ex,B}^{11}) - J_{\nu}(T_{CMB})}$
- From the radiative pumping: $T_{ex,A}^{01} > T_{ex,B}^{01} > T_{ex,B}^{11}$.
- Thus: $\Delta T_b^{01} > \Delta T_b^{11}$ if:
 - ► $T_{ex}^{11} < T_{ex}^{01}$

CONCLUSIONS: WHAT WAS MISSING TO FULLY UNDERSTAND HCN HFA?

- Models with detailed physical structure
 - Velocity field and Line width alter $\tau(\nu)$
- Precise hyperfine collisional rates
 - Correct population balance
- Observations covering several positions with increasing radii

CONCLUSIONS: RADIATIVE TRANSFER ON HCN AND ITS ISOTOPOLOGUES

- Physical structure essential to get correct collisional excitation: improved with Herschel/SPIRE
- Optically thin isotopologues essential to measure line widths
- All spectral features reproduced:
 - double-peak, red-blue asymmetry (RBA), HFA, line width
 - Foreground layer @ 8.1 km/s: needed for correct RBA
- ► Low HCN/H¹³CN ratio: HCN not depleted in ¹³C

PERSPECTIVES

- Chemistry:
 - Roueff et al. 2015 chemical fractionation model does not work for HCN.
 - No changes for CO: X(CO) >> X(HCN)
- Nitrogen isotopic ratios:
 - ► H¹³CN/HC¹⁵N can be used: upper limit on HCN/HC¹⁵N
 - spatial information disentangles: radiative transfer effects | fractionation
- HCN HFA and RBA, a new probe for velocity field and turbulence dissipation in prestellar cores down to the inner parts?