<u>Fractionation of</u> <u>Isotopes</u> <u>in space:</u> <u>From the solar system</u> <u>to galaxies</u>

10-13 October 2016

Florence

Introduction

Model

Results

Conclusion

The photochemical fractionation of oxygen isotopes in Titan's atmosphere

> Jean-Christophe LOISON (ISM, Bordeaux, France)

M. Dobrijevic, K. Hickson, A. Heays

Florence

Introduction

Model

Results

Florence

Introduction

Model

Results

Florence

Introduction

Model

Results

Florence

Introduction

Model

Results

Introduction

Model

Results

71 species 334 reactions

HCO

H₃O⁻

H₂COH

O(1D)

CO₂

R

hν

Introduction Model

Results

Fractionation of Isotopes

.

<u>in space:</u>

From the solar system

to galaxies

10-13 October 2016

Florence

Introduction

Model

Results

Conclusion

¹⁸Observations

- $C^{16}O/C^{18}O = 486 \pm 22$ (Nixon et al 2016)

- $C^{16}O_2/C^{16}O^{18}O = 173 \pm 55$ (Nixon et al 2016) (16O/18O ratio in CO₂ of 346 ± 110)

Cometary: ¹⁶O/¹⁸O ≈ 500

Fractionation of Isotopes

in space:

From the solar system

to galaxies 10-13 October 2016

Florence

Introduction

Model

Results

Conclusion

$OH + CO \rightarrow H + CO_2$

$k(OH+C^{18}O)=k(^{18}OH+CO)=0.985*k(OH+CO)$

(Chen 2005, Stevens 1980, Rockmann 1998, Feilberg 2005)

Fractionation of Isotopes in space: From the solar system to galaxies 10-13 October 2016 Florence Introduction Model Results

Conclusion

- Low ¹⁶O/¹⁸O fractionation in Titan
- If CO internal: $C^{16}O_i/C^{18}O_i \approx 500$
- If CO external: $C^{16}O/C^{18}O \approx {}^{16}O/{}^{18}O$ Enceladeus
- $C^{16}O_2/C^{16}O^{18}O$: observation < modelisation
- $H_2C^{16}O/H_2C^{18}O$: highly dependent of the O origin