CO fractionation in a low-metallicity starburst

Leslie Hunt INAF-Osservatorio Astrofisico di Arcetri, Firenze

with C. Henkel, V. Casasola, P. Caselli, F. Combes, S. Garcia-Burillo, K. M. Menten, L. Testi, A. Weiss

CO and star formation at low metallicity

chemical stratification in a Photo-Dissociation Region (PDR)

(adapted from Wolfire 2011)

PDR structure changes at low metallicity

CO emission comes from an increasingly smaller region as metallicity decreases (e.g., Maloney & Black 1988), and expected to disappear (complete dissociation) at sufficiently low metallicities. Thus CO-dark gas prevalent at low metal abundances.

to what low metal abundances can CO trace H₂?

MOlecules and DUst and LOw metallicity (MODULO) 155 dwarf galaxies imaged with *Spitzer/Herschel* and Z<0.4 Z_{\odot} ; median Z=0.19 Z_{\odot} metallicity decreases \rightarrow ordered disks become clumpy knots of star formation.

$Z=0.03 Z_{\odot}$

¹²CO(1-0), ¹²CO(2-1), IRAM 30m observations

 $\frac{\text{CGCG007-025, 0.11 Z}_{\odot} \quad \text{Mrk166, 0.12 Z}_{\odot} \quad \text{UM462, 0.19 Z}_{\odot} \quad \text{Mrk996, 0.20 Z}_{\odot} \quad \text{NGC7077, 0.22 Z}_{\odot}$

Hunt+ 2015, 2016

¹²CO(1-0), ¹²CO(2-1), IRAM 30m observations

<u>CGCG00</u>7-025, 0.11 Z_{\odot} Mrk166, 0.12 Z_{\odot} UM462, 0.19 Z_{\odot} Mrk996, 0.20 Z_{\odot} NGC7077, 0.22 Z_{\odot}

Hunt+ 2015, 2016

CO traces SFR even at low metallicity

significant trend of SFR/L'(CO) and O/H, directly related to the metallicity dependence of CO- H_2 mass conversion factor α_{CO}

Hunt+ 2015, 2016 (in prep)

for our sample (with Z<0.5Z $_{\odot}$), factor of 30 offset to lower L'(CO) for a given SFR relative to relation by Gao & Solomon (2004)

relatively narrow range of metallicities in our sample, so include additional galaxies (Schruba+ 2012; Grossi+ 2016; Elmegreen+ 2013, WLM; Shi+ 2014, Sextans A; Leroy+ 2007 IZw18, Hunt+ 2014, SBS0335-052)

physical conditions of the molecular gas in NGC 1140, a low metallicity starburst

Why NGC 1140 ?

extreme ¹²CO line ratios (¹²CO(2-1), ¹²CO(3-2)/¹²CO(1-0) corrected for beam dilution)

so possibly highly excited and/or optically thin gas

NGC 1140

dwarf starburst at ~19 Mpc distance hosting 6 super star clusters (SSCs) containing > 7000 O4 stars in 6 main clusters (Hunter+ 1994, de Grijs+ 2004, Moll+ 2007, Westmoquette+ 2010)

faintest of 6 SSCs 3 x luminosity of 30 Doradus, total SFR \sim 0.8 M $_{\odot}$ yr⁻¹

SSC ages from 5 Myr to 12 Myr, overall starburst < 55 Myr (de Grijs+ 2004, Moll+ 2007)

O/H \sim 0.3 Z $_{\odot}$ (12+logO/H=8.2), slightly higher than SMC, factor 2 lower than LMC

composite HST image: red=Hα, blue=0.3μm, yellow=0.8μm

NGC 1140: ¹²CO, ¹³CO

single-dish (IRAM, APEX) ¹²CO(1-0), ¹²CO(2-1), ¹²CO(3-2), ¹²CO(4-3), ¹³CO(1-0), ¹³CO(2-1) multi-frequency line analysis

χ^2 surfaces for Radex fit of NGC 1140: $^{12}CO,\,^{13}CO$

modeling single-dish ¹²CO(1-0), ¹²CO(2-1), ¹²CO(3-2), ¹²CO(4-3), ¹³CO(1-0), ¹³CO(2-1) line ratios constrains n_{H2} , T_{kin} , N_{12CO} , $X=^{12}CO/^{13}CO$, source size: sum of $\chi^2 = 0.7$ over 5 independent line ratios (size-related filling factor delicate issue, but crucial)

optically thin, cool (T_{kin} ~ 18 K), dense gas (n_{H2} ~ 10^{5.2} cm⁻³), with extremely low ¹²CO/¹³CO ~10-12(LVG models give consistent results)

¹²CO/¹³CO ratio and fractionation

NGC1140: extremely low ¹²CO/¹³CO abundance~ 8-12, roughly 7-8 times lower than the Galaxy, Solar neighborhood, 2.5 times lower than Galactic Center

Langer & Penzias (1990)

¹²CO/¹³CO ratio and fractionation

NGC1140: extremely low ¹²CO/¹³CO abundance~ 8-12, roughly 7-8 times lower than the Galaxy, Solar neighborhood, 2.5 times lower than Galactic Center

young age of starburst (5-12 Myr: de Grijs+ 2004, Moll+ 2007) makes it improbable to significantly enrich the elemental abundance of ¹³C in NGC 1140 through nucleosynthesis + dredge-up (convective mixing) in older, intermediate-mass stars

Milam+ (2005, 2009)

¹²CO/¹³CO ratio and fractionation

more likely cause CO fractionation

isotopic selective photodissociation of CO effective only in diffuse ($n_{H2} \le 100 \text{ cm}^{-3}$)

in denser regions with higher column density but moderate extinction (1 mag $\leq A_V \leq 3$ mag), fractionation reactions becomes important :

$^{13}C^{+} + ^{12}CO \implies ^{13}CO + ^{12}C^{+} + \Delta E (= 35 \text{ K})$

thus, at cool temperatures, the rightmost (exothermic) reaction dominates, leading to a reduced ¹²CO/¹³CO isotopic ratio

such considerations true in both PDRs and in turbulent molecular clouds (Röllig & Ossenkopf 2013; Szűcs, Glover, & Klessen 2014)

molecular fractionation at work in NGC 1140

NGC 1140 orobability density function 100 10 10 ¹²CO/¹³CO < 25 Non-fractionated Selective photodissociation 0-1 10 10⁻¹ Chemical fractionation 0-2 10-2 10-2 0-3 10⁻³ 10-3 0-4 10-4 10-4 10-5 10-5 10 10¹ 10^{2} 10³ 10⁴ 10⁵ 10⁶ 10⁷ 10 100 1 0 2 3 5 1 T_{gas} [K] n [cm⁻³] A_v [mag] 70 NGC 1140 N(¹²CO)/N(¹³CO) 40 40 40 25 0.3×Z_o 25 25 $0.1 \times G_{0}$ 0.6×Z_☉ $1 \times G_0$ 300 cm⁻ 1000 cm⁻³ 1×Z_o 10×G 10 18 10 12 16 18 12 16 18 10 12 14 16 14 10 14 log(N(¹²CO)) [cm⁻²] log(N(¹²CO)) [cm⁻²] log(N(¹²CO) [cm⁻²]

models of ¹²CO, ¹³CO fractionation (Röllig & Ossenkopf 2013, Szűcs+ 2014) predict a

"sweet spot" for maximum efficiency of ¹³CO formation

in cool, dense, optically thin (low A_V) gas at moderate CO column densities:

N(¹²CO) ~ 10¹⁶ cm⁻²

Szűcs+ (2014)

