

D/H equilibrium fractionation in ices

> A. Faure¹, M. Faure¹, E. Quirico¹ P. Theulé², B. Schmitt¹

¹IPAG, Grenoble; ²PIIM, Marseille

Fractionation of isotopes in space Firenze, 10-13 october 2016

Outline

- The methanol puzzle
- Experiment
- Model
- Results
- Conclusions & perspectives

The methanol puzzle

H/D exchanges in ice

- Thin films (1 μ m) of H₂O:CD₃OD • ice mixtures are monitored by FTIR spectroscopy
- Rapid (~ hrs) H/D exchanges are observed above T=120K on the -OH functional group

Kinetics experiment

- Exchanges are observed in H₂O:CD₃OD and H₂O:CD₃ND₂, but not in D₂O:HCN
- Activation energies are similar for exchanges and crystallisation (~ 4000 K)

[See Faure M. et al. *Icarus* **261** 14 (2015)]

The model

- Grain surface chemical model (rate equations) as in Hasegawa et al. ApJ (1992)
- Chemistry is limited to H/D exchanges + accretion + thermal sublimation
- No diffusion on grains and no post-evaporative gas-phase chemistry

Surface species considered:

- H_2O
- HDO
- D_2O
- CH₃OH, CH₃OD
- CH₂DOH, CHD₂OD
- CD₂HOH, CD₂HOD
- CD₃OH, CD₃OD

H/D exchange kinetics of $CH_3OD + H_2O = CH_3OH + HDO$

- Experimental data fitted to a 1st-order rate constant k^{1st}(T) (Arrhenius type)
- BUT: rate equations require a 2nd-order rate constant
- Assuming a H₂O partial order of 1, we have:
 k^{2nd}(T) = k^{1st}(T)/n(s-H₂O)

Reversibility predicts a relation between k^{1st} and k_b : $K(T) = k^{1st}/k_b = K^{stat} * \exp(-\Delta H/T)$ where ΔH was measured in liquid phase (~ 50 K)

Ice composition

- See Öberg et al. (2011), Boogert et al. (2015)
- Low-mass protostars IRAS 16293
 - $[H_2O] = 5.10^{-5}$ (relative to n_H)
 - $[CH_3OH] = 3\%$ relative to $[H_2O]$
- High-mass protostars Orion KL
 - $[H_2O] = 5.10^{-5}$ (relative to n_H)
 - $[CH_3OH] = 4\%$ relative to $[H_2O]$

```
Statistical addition of H and D
atoms to CO:
[CH_2DOH]/[CH_3OH] = 3*(D/H)_m[CH_3OD]/[CH_3OH] = (D/H)_m[CD_2HOH]/[CH_3OH] = 3*(D/H)_m^2etc.
```

Initial conditions

- Accreting (D/H)_m atomic ratio is fixed by CH₂DOH fractionation:
 - IRAS 16293: (D/H)_m = 12%
 - Orion-KL: $(D/H)_m = 0.2\%$
- Water deuteration (D/H)_w is our (unique) free parameter
- $n_{\rm H}=2*10^7$ cm⁻³, $T_g=T_d=100$ K \rightarrow instantaneous jump + steady-state solutions

	IRAS-16293			
Species	Abundance	Isotopologue	Fractionation	
H ₂ O	5.0(-5)	HDO	1.0(-4)-1.1(-1)	
		D_2O	2.5(-9)-2.8(-3)	
CH ₃ OH	1.5(-6)	CH ₃ OD	1.2(-1)	
		CH ₂ DOH	3.6(-1)	
		CH ₂ DOD	4.3(-2)	
		CD ₂ HOH	4.3(-2)	
		CD ₂ HOD	5.2(-3)	
		CD ₃ OH	1.7(-3)	
		CD ₃ OD	2.1(-4)	
		Orion-K	L	
Species	Abundance	Isotopologue	Fractionation	
H ₂ O	5.0(-5)	HDO	1.0(-4)-1.1(-1)	
		D_2O	2.5(-9)-2.8(-3)	
CH₃OH	2.0(-6)	CH ₃ OD	2.0(-3)	
		CH ₂ DOH	6.0(-3)	
		CH ₂ DOD	1.2(-5)	
		CD ₂ HOH	1.2(-5)	
		CD ₂ HOD	2.4(-8)	
		CD ₃ OH	8.0(-9)	
		CD ₃ OD	1.6(-11)	

Gas-phase D-methanol

[s-HDO]/[s-H₂O] ~2%

 $[s-HDO]/[s-H_2O] \sim 0.6\%$

Gas-phase HDO

Best-model

- Agreement between model and observations is within error bars.
- Next isotoplogue to be detected is CH₂DOD (but frequencies not available...)

Species	Best model	Observations	References
HDO	2.5(-2)	6.6(-4)-5.0(-2)	Coutens et al. (2013)
			Persson et al. (2014)
D_2O	1.7(-4)	≤3.0(-4)	Coutens et al. (2013)
CH ₃ OD	2.0(-2)	$1.8^{+2.2}_{-1.2}(-2)$	Parise et al. (2006)
CH ₂ DOH	3.6(-1)	$3.7^{+3.8}_{-1.9}(-1)$	Parise et al. (2006)
CH ₂ DOD	7.2(-3)	-	-
CD ₂ HOH	4.4(-2)	$7.4^{+8.4}_{-4.4}(-2)$	Parise et al. (2006)
CD ₂ HOD	8.8(-4)	-	-
CD ₃ OH	1.8(-3)	$8.0^{+6.0}_{-6.0}(-3)$	Parise et al. (2004)
CD ₃ OD	3.5(-5)	-	-
		Orion-Kl	-
Species	Best model	Observations	References
HDO	6.0(-3)	$3.8^{+3.6}_{-2.5}(-3)$	Neill et al. (2013)
D_2O	1.0(-5)	-	-
CH ₃ OD	4.9(-3)	$5.0^{+1.0}_{-1.0}(-3)$	Neill et al. (2013)
CH ₂ DOH	6.0(-3)	$5.8^{+1.2}_{-1.2}(-3)$	Neill et al. (2013)
CH ₂ DOD	2.9(-5)	-	-
CD ₂ HOH	1.2(-5)	-	-
CD ₂ HOD	2.5(-8)	-	-
CD ₃ OH	8.2(-9)	-	-
	1 7 (1 1)		

Analytical solution

- Statistical deuteration
 [CH₂DOH]/[CH₃OH] = 3*(D/H)_m
- Reversibility $[CH_{3}OH]/[CH_{3}OD] = 2*exp(-\Delta H/T)*[H_{2}O]/[HDO]$ $= exp(-\Delta H/T)/(D/H)_{w}$
- D-methanol

 $[CH_2DOH]/[CH_3OD] = 3*(D/H)_m*exp(-\Delta H/T)/(D/H)_w$ ~ $(D/H)_m/(D/H)_w$ [See Faure et al. A&A 583 A98 (2015)]

Conclusions

- Molecules with –OD or –ND bonds (not –CD) can isotopically equilibrate with water ice
- D/H ratios measured in hot cores may not be representative of the original mantles

• D-methanol is a potential probe of water deuteration in the ice

Perspectives

- D-methanol in cold cores (Bizzocchi et al. 2014) and Sgr B2(N2) (Belloche et al. 2015)
- D-isotopologues of NH₂CHO and CH₂OH-CHO recently detected with ALMA (talk by A. Coutens)
- Investigate other (non thermal) desorption mechanisms, i.e. UV and cosmic ray impact.