THE L1157-B1 ASTROCHEMICAL LABORATORY: TESTING THE ORIGIN OF DCN

GEMMA BUSQUET

Institut de Ciències de l'Espai (IEEC-CSIC)

Francesco Fontani, Serena Viti, Claudio Codella, Bertrand Lefloch, Milena Benedettini, Cecilia Ceccarelli

Fractionation of isotopes in space: from the solar system to galaxies

Firenze October 10-13, 2016

DEUTERIUM ENRICHMENT

In cold molecular gas (T~10 K)

Formation of H₃+
 Formation of H₂D+
 (D₂H⁺, and D₃⁺)

 $H_3^+ + HD \longrightarrow H_2D^+ + H_2 + 232 K$

Formation of other
D-bearing molecules:
In the gas-phase
In the grain mantles

from PPVI: Ceccarelli et al. (2014)

DEUTERIUM ENRICHMENT

In warm /hot environments (such as in SHOCKS)

 $H_{3}^{+} + HD \longrightarrow H_{2}D^{+} + H_{2} + 232 \text{ K}$ $CH_{3}^{+} + HD \longrightarrow CH_{2}D^{+} + H_{2} + 370 \text{ K}$ Gas-phase deuteration (T-30-50 K) $C_{2}H_{2}^{+} + HD \longrightarrow C_{2}HD^{+} + H_{2} + 550 \text{ K}$

- Evaporation of ices surrounding grains: remnants of the cold prestellar phase
- Sputtering

DEUTERIUM ENRICHMENT

In warm /hot environments (such as in SHOCKS)

 $\begin{array}{c} H_{3}^{+} + HD \longrightarrow H_{2}D^{+} + H_{2} + 232 \text{ K} \\ \\ CH_{3}^{+} + HD \longrightarrow CH_{2}D^{+} + H_{2} + 370 \text{ K} \\ C_{2}H_{2}^{+} + HD \longrightarrow C_{2}HD^{+} + H_{2} + 550 \text{ K} \end{array}$

- Evaporation of ices surrounding grains: remnants of the cold prestellar phase
- Sputtering

- distance of 250 pc; powered by a Class 0 protostar
- Most chemically rich outflow known so far: SiO, CO, SO, CH₃OH, H₂O, C₂H₅OH and many other molecules!
- Precessing molecular jet, detected recently toward the protostar (Podio et al. 2016),
 associated with several bow shocks seen in
 CO (Gueth et al. 1996) and H₂ (Neufeld et al. 2009)

B1 is the brightest shocked region

- distance of 250 pc; powered by a Class 0 protostar
- Most chemically rich outflow known so far: SiO, CO, SO, CH₃OH, H₂O, C₂H₅OH and many other molecules!
- Precessing molecular jet, detected recently toward the protostar (Podio et al. 2016),
 associated with several bow shocks seen in
 CO (Gueth et al. 1996) and H₂ (Neufeld et al. 2009)

B1 is the brightest shocked region

Image from Podio et al. (2016): Spitzer 8 µm (Looney et al. 2007, Takami et al. 2011)

- distance of 250 pc; powered by a Class 0 protostar
- Most chemically rich outflow known so far: SiO, CO, SO, CH₃OH, H₂O, C₂H₅OH and many other molecules!
- Precessing molecular jet, detected recently toward the protostar (Podio et al. 2016),
 associated with several bow shocks seen in
 CO (Gueth et al. 1996) and H₂ (Neufeld et al. 2009)

B1 is the brightest shocked region

Image from Podio et al. (2016): Spitzer 8 µm (Looney et al. 2007, Takami et al. 2011)

- distance of 250 pc; powered by a Class 0 protostar
- Most chemically rich outflow known so far: SiO, CO, SO, CH₃OH, H₂O, C₂H₅OH and many other molecules!
- Precessing molecular jet, detected recently toward the protostar (Podio et al. 2016), associated with several bow shocks seen in CO (Gueth et al. 1996) and H₂ (Neufeld et al. 2009)

B1 is the brightest shocked region

- distance of 250 pc; powered by a Class 0 protostar
- Most chemically rich outflow known so far: SiO, CO, SO, CH₃OH, H₂O, C₂H₅OH and many other molecules!
- Precessing molecular jet, detected recently toward the protostar (Podio et al. 2016), associated with several bow shocks seen in CO (Gueth et al. 1996) and H₂ (Neufeld et al. 2009)

B1 is the brightest shocked region

DEUTERIUM FRACTIONATION IN L1157-B1

Deuterated molecules observed with IRAM 30m and Herschel (Codella et al. 2012)

 HDO, HDCO, and CH₂DOH provide us with a fossil record of the conditions at the time when ices were formed
 The shock released in the gas phase part of the grain mantles ices

DEUTERIUM FRACTIONATION IN L1157-B1

Deuterated molecules observed with IRAM 30m and Herschel (Codella et al. 2012)

 HDO, HDCO, and CH₂DOH provide us with a fossil record of the conditions at the time when ices were formed
 The shock released in the gas phase part of the grain mantles ices

DEUTERIUM FRACTIONATION IN L1157-B1

HDCO and CH₂DOH maps from NOEMA (Fontani et al. 2014)

HDCO: region of the interface between the fast jet and the slower ambient material

> D_{frac}(H₂CO): ~0.1 E-Wall ~0.04 Arch < 0.02 Head

First clear evidence of a deuterated molecule as a shock tracer Obtain D_{frac}(H₂CO) on dust grain mantles

NOEMA OBSERVATIONS

4

DCN (2-1) @144.828 GHz and H¹³CN (2-1) @172.678 GHz D and C configurations beam ~2" (~500 au)

NOEMA OBSERVATIONS

Different origin of DCN and HDCO: warm gas-phase versus surface chemistry?

DCN (2-1) @144.828 GHz and H¹³CN (2-1) @172.678 GHz D and C configurations beam ~2" (~500 au)

DCN AND HCN: MORPHOLOGY

B1a: peak of the SiO where the precessing jet impacts

DCN AND HCN: MORPHOLOGY

B1a: peak of the SiO where the precessing jet impacts

DCN AND HCN: MORPHOLOGY

B1a: peak of the SiO where the precessing jet impacts

DEUTERATED FRACTION: DCN/HCN

$$\begin{split} D_{frac}(HCN) &< D_{frac}(H_2CO) \& D_{frac}(CH_3OH) \\ D_{frac}(HCN) & \text{ in } L1157\text{-}B1 &< D_{frac}(HCN) L1157\text{-}mm \end{split}$$

DEUTERATED FRACTION: DCN/HCN

10-70 K	(BUe)			(head)	
D _{frac} x 10 ⁻³	4-5	3	<0.8	2-3	5-6

 $D_{frac}(HCN) < D_{frac}(H_2CO) \& D_{frac}(CH_3OH)$ $D_{frac}(HCN) in L1157-B1 < D_{frac}(HCN) L1157-mm$

Contrary to HDCO, there is no segregation in D_{frac}(HCN) Dominant mechanism for deuteration in the head of the bow-shock: gas-phase chemistry

CHEMICAL MODEL

CHEMICAL MODEL

- Shock model of Viti et al. (2011): time dependent gas-grain chemical model UCL_CHEM (Viti et al. 2004) + parametric shock model
 (Jimenez-Serra et al. 2008)
- Initial solar abundances for all species; metals and sulfur depleted factor of 100
- ζ=3x10⁻¹⁷ s⁻¹ and 3x10⁻¹⁶ s⁻¹ (as found in Podio et al. 2014)
- pre-shock density n(H₂)=10³, 10⁴, and 10⁵ cm⁻³
- Shock velocity $v_s = 40 \text{ km/s}$ (30 km/s for 10³ cm⁻³ case)
- Thermal desorption and sputtering of icy mantles
- Non-deuterated chemical network: UMIST 12
- Deuterated network: Esplugues et al. (2013)
- Triple-D species non included; only some double-D species

$n(H_2)=10^4 \text{ cm}^{-3}$, $v_s=40 \text{ km/s}$

$n(H_2)=10^4$ cm⁻³, v_s=40 km/s

$n(H_2)=10^4 \text{ cm}^{-3}$, $v_s=40 \text{ km/s}$

$n(H_2)=10^4 \text{ cm}^{-3}$, $v_s=40 \text{ km/s}$

CHEMICAL MODEL: DFRAc(HCN)

THE JET IMPACT REGION

- [SII] optical image seems to trace the inner parts of the cavity walls
- [SII] points toward the SiO (2-1) high-velocity peak and the bright DCN clump

THE JET IMPACT REGION

- [SII] optical image seems to trace the inner parts of the cavity walls
- [SII] points toward the SiO (2-1) high-velocity peak and the bright DCN clump

DCN formation:

 Warm gas-phase chemistry at the head of the bow-shock and widespread in all the emitting region

Sputtering at the interface between the fast jet and the ambient medium?

SUMMARY AND CONCLUSIONS

- In L1157-B1: D_{frac}(HCN)~3x10⁻³ << D_{frac}(H₂CO) and D_{frac}(CH₃OH)
- HDCO and CH₂DOH found at the interface between the shock and the ambient medium: evaporation/erosion of grains mantles is maximum
- DCN is more widespread, not limited to the impact region and detected in the head of bow-shock: warm gas-phase chemistry
- UCL_CHEM + parametric C-type shock model: increase in X(DCN) and X(HCN) due to the passage of the shock
- Several mechanism at work: Sputtering of DCN from grain mantles + warm gas-phase chemistry

THANK YOU!

NOEMA VERSUS IRAM 30M: MISSING FLUX?

- NOEMA spectra extracted within a region corresponding to the mean of the single dish:
 17.4" for DCN
 14.6" for H¹³CN
- 85% of the flux is recovered in DCN(2-1)

Almost the total flux in H¹³CN(2-1)

NOEMA VERSUS IRAM 30M: MISSING FLUX?

Multiple excitation components coexisting in the B1 shock: $I(v) \sim exp(-|v/v_0|)$

NOEMA VERSUS IRAM 30M: MISSING FLUX?

Multiple excitation components coexisting in the B1 shock: $I(v) \sim exp(-|v/v_0|)$

