

DECREASE OF THE ORGANICS DEUTERATION DURING THE FORMATION OF SUN-LIKE STARS

The case of SVS13-A

Eleonora Bianchi

on behalf of: C. Codella (Arcetri), C. Ceccarelli (IPAG), F. Fontani (Arcetri), L. Testi (ESO/ Arcetri), R. Bachiller (OAN), B. Lefloch (IPAG), L. Podio (Arcetri), V. Taquet (Leiden)

D/H: WHAT HAPPENS BETWEEN CLASS 0 AND CLASS II?

3

SVS 13-A Astrochemical Surveys At IRAM 30m

LINE PROFILES OF DEUTERATED SPECIES

H₂¹³CO: 7 lines E_u=10-45 K

HDCO: 5 lines E_u=18-40 K

D₂CO: 5 lines E_u=21-50 K

¹³CH₃OH: 19 lines E_u=20-175 K

CH₂DOH: 27 lines E_u=20-194 K

FORMALDEHYDE: LVG ANALYSIS

LVG analysis confirms T around 20 K and indicates densities close to 10⁷ cm⁻³ (supporting LTE conditions)

SINGLE DEUTERATED FORMALDEHYDE

This suggests an extended emission! Envelope/outflow components

Fractionation of isotopes in space

LOW

HDCO

 $E_{U}=40$

15

E_U=27

15

10

10

 V_{LSR} (km s⁻¹)

HDCC

 $(4_{13} - 3_{12})$

Ο

5

5

HDCO

 $(3_{1,2}-2_{1,1})$

 T_{MB} (K)

 T_{MB} (K)

0.1

0

0.2

0.1

0

 \cap

0.2

0.1

0.2

0.1

HDCO

 $(4_{1,4} - 3_{1,3})$

HDCO

 $(4_{0,4} - 3_{0,3})$

5

0

Florence, 10-13 October 2016

40

45

50

7

8

T_{rot} and FWHMs seem to be higher.. different origin??

WHICH CH₃OH ISOTOPOLOGUE?

CH₃OH optically thick

E_u > 50 K high temperatures; hot corino ?
E_u < 50 K colder gas

METHANOL: LVG ANALYSIS

Work in progress...

Preliminary results: ¹³CH₃OH: 2 components!

LVG analysis suggests:

1. a very small (~ 0.3"), dense (> 10^8 cm⁻³), and hot (~ 80 K): the hot corino

a colder (~ 40 K), less dense (≥ 10⁶ cm⁻³), and still quite compact (≥ 1"-2"): which is the origin?

3. we need interferometric maps

SINGLE DEUTERATED METHANOL

11

 E_u < 50 K colder gas

SINGLE AND DOUBLE DEUTERATED METHANOL

Tentative detections (only two lines...)

$[CH_2DOH]/[CH_3OD] \ge 2$

CHD₂OH

 $N \le 2 \times 10^{14} \text{ cm}^{-2}$

not so far from the grain chemistry statistical value ? (Charnley et al. 1997, Osamura et al. 2004).

DECREASE OF THE ORGANICS DEUTERATION

[HDCO]/[H₂CO] ~ (7.9 ± 0.80) 10⁻² HDCO: a lower D/H ? (Outflow: D/H ~ 4 10⁻³; consistent with L1157-B1)

D₂CO]/[H₂CO] ~ (4.5 ± 1.1) 10⁻³ D₂CO deuteration decreases of about 1 order of magnitude for Class I

 $[CH_2DOH]/[CH_3OH] \sim (3.2 \pm 0.7) 10^{-3}$

CH₃OH deuteration decreases from Class 0 to Class I by 2 orders of magnitude!

These results call for further observations of Class I objects (more statistics!!)

al. 2014

(PPVI)

DECREASE OF THE ORGANICS DEUTERATION

These results call for further observations of Class I objects (more statistics!!)

COMPARISON WITH GRAIN-GAS MODELS

- Gas-phase chemistry kills the deuteration as time goes by
- Is this occurring on timescales of 10⁵ yr, i.e. a typical Class I age ? Possibly not.....

Caution: dynamical timescale could be shorter.... (Visser et al. 2009)

COMPARISON WITH GRAIN-GAS MODELS

L1157-B1 (shock, off from the protostar) Codella et al. 2012 IRAM 30 m Fontani et al. 2014 PdBI

A Class I hot corino could provide a signature of less dense gas collapsed around the protostar

In other words as time proceeds the protostar accumulates external portion of its natal cloud reasonably associated with lower densities (Taquet et al. 2014)

CONCLUSIONS

- [HDCO]/[H₂CO] slightly decrease ?
- [D₂CO]/[H₂CO] decreases of about 1 order of magnitude for Class I
- [CH₂DOH]/[CH₃OH] decreases from Class 0 to Class I by 2 orders of magnitude!
 - Gas-phase chemistry or gradual collapse of the core with a lower deuteration in outer shells ?

FUTURE:

- more statistics (Class I observations)
- interferometry (high angular resolution images of the emitting regions)