Chemical characterisation of nearby active galaxies

Rebeca Aladro Chalmers University of Technology

Chemical characterisation of nearby active galaxies

Warning: this talk doesn't contain deuterium fractionation! Charmers University of Technology

3mm survey of eight nearby active galaxies

T_{MB} (mK)

Chemical Evolution of Local Starburst Galaxies

Higher resolution is needed to study AGNs

Single dish: HCN/C¹⁸O, HNC/C¹⁸O, CN/C¹⁸O, C₂H/C¹⁸O, HCO+/HCN, CN/HCN: Do not correlate with AGN activity: mixing of SB and AGN emissions

ULIRGs are characterised by high abundances of 18 O, HC₃N and H¹³CN

Less diffuse and more enriched gas in ULIRGs: nucleosynthesis along time More warm dust in ULIRGs allows high abundances of these species

Differences between Arp220 and Mrk231 point to different nuclear powering sources

Arp220: HC₃N vibrationally excited T_{vib} =190 ± 20 K. Massive star-forming regions

Extragalactic Isotopic Ratios (OMG!)

Extragalactic Isotopic Ratios (OMG!)

Summary

- Shocks and UV fields vary with starburst evolution and shape starbursts galaxies chemistry: HNCO, CH₃OH, CH₃CCH, c-C₃H₂....
- ULIRGs are chemically characterised by high C¹⁸O, HC₃N and H¹³CN abundances and vibrationally excited HC₃N (HCN, HNC). Arp220: starburst, Mrk231: AGN.
- Need of multi-line analysis to avoid excitation effects, also need of high resolution to study AGNs
- What is the best method to calculate isotopic ratios and compare among galaxies?