Grand Design Spiral Arms in A Young Forming Circumstellar Disk

Kengo TOMIDA (Osaka), Masahiro N. Machida (Kyushu), Takashi Hosokawa (Kyoto),

Yuya Sakurai (Tokyo), Chia Hui Lin (Osaka / National Taiwan University)

Reference: Tomida et al. 2017, ApJL, 835, L11

Background	Synthetic Observation
Angular momentum transport is the key of star/disk	In order to compare our model directly with the
Formation and evolution.	observation, we calculate the dust continuum at 1.3mm.
• Magnetic braking and magnetically-driven outflows	1. Calculate evolution of the star (the STELLAR code, Yorke
• Gravitational torque by non-axisymmetric structures	& Bodenheimer 2008, Hosokawa et al. 2013)
• (turbulence, viscosity and other instabilities)	2. Recalculate the temperature assuming that the
Grand design spiral arms are found around a young Class-II object Elias 2-27 (Pérez+ 2016), but the origin is unclear: Gravitational instability	 temperature is in equilibrium under the stellar irradiation using RADMC-3D (Dullemond 2012) and the opacities of Semenov et al. (2003) 3. Calculate the intensity distribution with RADMC-3D
but spiral arms should dis-	4 Simulate ALMA observation using CASA
the differential rotation (?)	Obtained stallar properties at the and of the simulation.

 Planet-disk interaction a planet may exist in the "gap", but it should produce nonaxisymmetric arms (?) • Density waves favored by elimination (?)

We perform a long-term MHD simulation until the end of the Class-I phase and compare our model with Elias 2-27.

MHD Simulation

Initial condition:

• unstable Bonnor-Ebert sphere

• T=10K, ρ_c =2.2x10⁻⁸ g/cc, 1.25Ms

• B=36 μ G, mass-to-flux ratio μ =3

• aligned rotation $\Omega = 1.5 \times 10^{-13}/s$

Simulation Method:

- 3D Nested-grid
- MHD + Ohmic dissipation
- Self-gravity
- A sink particle
- Barotropic approximation
- Resolution: best ~ 0.75AU, typically 3-6 AU @ R~100-200 AU

Mass: $0.444M_{\odot}$, Radius: 2.935 R $_{\odot}$, Luminosity: 1.604 L $_{\odot}$

Obtained stellar properties at the end of the simulation:

The time-averaged accretion rate in the simulation is high: $\sim 10^{-6} M_{\odot}/yr$. Considering the luminosity problem and episodic accretion, we use the observed accretion rate 8x 10⁻⁸ M_{\odot} /yr (Najita et al. 2015). \rightarrow Accretion luminosity: 0.379 L_{\odot}, Total luminosity: 1.98 L_o, Effective temperature: 4,000 K, Spectral type: ~ MO (good agreement with Elias 2-27) The protostar age: ~ 5 x 10⁴ yrs

Elias 2-27: ~ 10^5 yrs (isochrone)

Parameters of the ALMA simulation (based on Pérez+ 2016): Position: RA = 16h26m45.024s, Dec = -24d23m08.250s Distance and Inclination: 139pc, 55.8° Array configuration: alma.cycle4.5.cfg Integration time: 12.5 minutes on the source Wavelength and Bandwidth: 1.3mm, 6.8GHz CLEAN: the Briggs waiting, robustness = 0.5 \rightarrow Beam size : 0.29 arcsec x 0.26 arcsec (\sim 40 AU x 36 AU)

- We run the simulation till the end of Class-I - almost all the gas was accreted or ejected.
- The disk mass is ~30% of the mass of the central protostar
- Magnetic braking becomes less efficient as the disk grows and as the envelope disperses.
- The disk gets gravitationally unstable and the spiral arms form, then the disk stabilizes and circularizes.

Left: synthetic observation (Tomida et al. 2017) Right: actual ALMA observation (Pérez et al. 2016) They are in good agreement (I mean, "astrophysically") \rightarrow the gravitational instability model works well!

Conclusions and Discussions

- \rightarrow This occurs recurrently and its timescale is a few orbits.
- The disk oscillates as it grows the radius correlates with Q.
- The disk radius reaches 200AU no magnetic braking catastrophe.
- The spiral arms persist through out class-0/I - reasonably likely in the visible state (\sim 50%)

• Young circumstellar disks become massive, and spiral arms form recurrently by the gravitational instability • Our model successfully reproduces most of Elias 2-27 → Gravitational instability scenario can explain spiral arms Slow molecular outflows (1~2 km/s, Gurney+ 2008) and the age (observation: ~10⁵ yrs vs model: ~5 x 10⁴ yrs) are also consistent with the observation • If such spiral arms are common in young circumstellar disks, it means that young circumstellar disks are massive. \rightarrow This is consistent with the observed high binary rate. → Also important as the environment of planet formation