The formation of prebiotic molecules in star-forming regions

Víctor M. Rivilla Osservatorio Astrofisico di Arcetri, OAA-INAF

.....

Francesco's Legacy, Florence, June 5-9 2017

We are chemistry !

Atoms aggregated in ...

MOLECULES

Mc	olecule	s in	the	Interstella	· Mediur	n or	Circumstella	ar Shells	(as of	02/2016)
----	---------	------	-----	-------------	----------	------	--------------	-----------	--------	---------	---

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	>12 atoms
H ₂	C ₃ *	c-C ₃ H	C ₅ *	C ₅ H	C ₆ H	CH ₃ C ₃ N	CH ₃ C ₄ H	CH ₃ C ₅ N	HC ₉ N	c-C ₆ H ₆ *	HC ₁₁ N
AIF	C ₂ H	<i>І</i> -С ₃ Н	C ₄ H	I-H ₂ C ₄	CH ₂ CHCN	HC(O)OCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO	CH ₃ C ₆ H	n-C ₃ H ₇ CN	C ₆₀ *
AICI	C ₂ O	C ₃ N	C ₄ Si	C ₂ H ₄ *	CH ₃ C ₂ H	CH ₃ COOH	(CH ₃) ₂ O	(CH ₂ OH) ₂	C ₂ H ₅ OCHO	i-C ₃ H ₇ CN	C ₇₀ *
C2**	C ₂ S	C ₃ O	<i>I</i> -C ₃ H ₂	CH ₃ CN	HC ₅ N	C ₇ H	CH ₃ CH ₂ OH	CH ₃ CH ₂ CHO	CH ₃ OC(O)CH ₃	C ₂ H ₅ OCH ₃ ?	C ₆₀ **
CH	CH ₂	C ₃ S	<i>с</i> -С ₃ Н ₂	CH ₃ NC	CH ₃ CHO	C ₆ H ₂	HC ₇ N				
CH ⁺	HCN	C ₂ H ₂ *	H ₂ CCN	CH ₃ OH	CH ₃ NH ₂	CH ₂ OHCHO	C ₈ H				
CN	HCO	NH ₃	CH ₄ *	CH ₃ SH	c-C ₂ H ₄ O	/-HC ₆ H *	CH ₃ C(O)NH ₂				
CO	HCO ⁺	HCCN	HC ₃ N	HC ₃ NH ⁺	H ₂ CCHOH	CH ₂ CHCHO (?)	C ₈ H [−]				
CO ⁺	HCS ⁺	HCNH ⁺	HC ₂ NC	HC ₂ CHO	C ₆ H ⁻	CH ₂ CCHCN	C ₃ H ₆				
СР	HOC+	HNCO	НСООН	NH ₂ CHO	CH ₃ NCO 2015	H ₂ NCH ₂ CN	CH ₃ CH ₂ SH (?)				
SiC	H ₂ O	HNCS	H ₂ CNH	C ₅ N		CH ₃ CHNH					
HCI	H ₂ S	HOCO ⁺	H ₂ C ₂ O	/-HC ₄ H *							
KCI	HNC	H ₂ CO	H ₂ NCN	/-HC ₄ N							
NH	HNO	H ₂ CN	HNC ₃	c-H ₂ C ₃ O							
NO	MgCN	H ₂ CS	SiH ₄ *	H ₂ CCNH (?)							
NS	MgNC	H ₃ O ⁺	H ₂ COH ⁺	$C_5 N^-$							
NaCl	N_2H^+	c-SiC ₃	C₄H [−]	HNCHCN							
ОН	N ₂ O	CH ₃ *	HC(O)CN								
PN	NaCN	C ₃ N [−]	HNCNH								
SO	OCS	PH ₃	CH ₃ O								
SO ⁺	SO ₂	HCNO	NH4 ⁺								
SiN	c-SiC ₂	HOCN	H ₂ NCO ⁺ (?)								ARC.
SiO	CO ₂ *	HSCN	NCCNH ⁺ 2015								PH 1
SiS	NH ₂	H ₂ O ₂									1
CS	H3 ^{+ (*)}	C ₃ H⁺									
HF	SiCN	HMgNC							1		-
HD	AINC	HCCO 2015									E
FeO?	SiNC										
0 ₂	HCP										
CF ⁺	CCP										
SiH?	AIOH										
PO	H ₂ O ⁺										
AIO	H ₂ Cl ⁺										A Company
OH ⁺	KCN										10
CN ⁻	FeCN										
SH ⁺	HO ₂										
SH	TiO ₂										
HCI ⁺	C ₂ N										
TiO	Si ₂ C 2015								1		
ArH ⁺											
NO ⁺ ?									pho	oto credit: Jenny Motta	r jan a

Molecules detected in space

Almost 200 molecules have been detected in space

"ASTROCHEMICAL" table of elements

"ASTROBIOLOGICAL" table of key-elements

- Molecules containing the 5 key elements for the development of LIFE (C, N, O, S, P).
- Relevant for prebiotic chemistry due to its structural and functional role in DNA, RNA, ATP...
- The detection in star-forming regions has open the possibility of understanding how LIFE could emerge on Earth.

- Molecules containing the 5 key elements for the development of LIFE (C, N, O, S, P).
- Relevant for prebiotic chemistry due to its structural and functional role in DNA, RNA, ATP...
- The detection in star-forming regions has open the possibility of understanding how LIFE could emerge on Earth.

- Molecules containing the 5 key elements for the development of LIFE (C, N, O, S, P).
- Relevant for prebiotic chemistry due to its structural and functional role in DNA, RNA, ATP...
- The detection in star-forming regions has open the possibility of understanding how LIFE could emerge on Earth.

- Molecules containing the 5 key elements for the development of LIFE (C, N, O, S, P).
- Relevant for prebiotic chemistry due to its structural and functional role in DNA, RNA, ATP...
- The detection in star-forming regions has open the possibility of understanding how LIFE could emerge on Earth.

- Molecules containing the 5 key elements for the development of LIFE (C, N, O, S, P).
- Relevant for prebiotic chemistry due to its structural and functional role in DNA, RNA, ATP...
- The detection in star-forming regions has open the possibility of understanding how LIFE could emerge on Earth.

- Molecules containing the 5 key elements for the development (, N, O, S_P).
- Relevant for prehemica ue to its structural aptimictional in DNA, RNA, ATP...
- The detect ar-form g regions has open the possibility or underst emerge on Earth.

COMPLEX ORGANIC MOLECULES

PHOSPHORUS-BEARING MOLECULES

ohoto credit: Jenny Mottar

Osservatorio Astrofisico di Arcetri (Florence) - Star Formation Group: Understanding the formation of prebiotic molecules in star-forming regions

- 1 **Detection** of prebiotic molecules in star-forming regions
- 2 Derivation of physical parameters: **molecular abundances** and temperatures.
- 3 Comparison with **chemical models** how are they formed?

GOMPLEX ORGANIC MOLECULES (COMS)

 O-bearing 2 atoms: CO, C¹⁷O, C¹⁸ 3 atoms: HCO, HC¹⁸O+ 4 atoms: H₂CO, H₂¹³CO 5 atoms: CH₂CO, HCOO 6 atoms: CH₃OH, ¹³CH₃ 7 atoms: CH₃OH, c-H 8 atoms: CH₃OCHO, CH 9 atoms: CH₃OCH₃, C₂H 10 atoms: CH₃COCH₃, 	O, $C^{13}O$, $HC^{17}O+$, $H^{13}CO^+$, OH , OH , OH , OH , $2COCH_2$, H_2OHCHO , H_5OH , , $(CH_2OH)_2$	 P-Dearing 2 atoms: NH, CN, NS 3 atoms: HCN, H¹³CN, HC¹⁵N, HN¹³C, H¹⁵NC, N¹⁵NH+ 4 atoms: HNCO, HNC¹⁸O 5 atoms: HC₃N 6 atoms: NH₂CHO, CH₃CN, CH₃¹³CN 7 atoms: HC₅N, CH₃NCO, C₂H₃CN 9 atoms: C₂H₅CN 			
Only C and H • 3 atoms: CCH • 5 atoms: c-C ₃ H ₂ • 7 atoms: CH ₃ CCH	 S-bearing 2 atoms: SO, ³⁴SO, ¹³ 3 atoms: SO₂, ³⁴SO₂, 0¹³CS, ¹⁸OCS, 0C³⁴S, 4 atoms: ULCS 	³ CS, ¹³ C ³⁴ S, C ³⁴ S H ₂ S, OCS, HCS ⁺	 Deuterated 3 atoms: DCN, DCO+ 4 atoms: NH2D 6 atoms: CH2DCN, CH2DOH, CH3OD 		
Si-bearing • 2 atoms: SiO, SiS	 4 atoms: H₂CS P-bearing 2 atoms: PN 		 H recombination lines H-alpha H-gamma, H-beta He-alpha 		

45 molecular species, **16 COMs**, 23 isotopologs, 6 deuterated species, 2 cyclic molecules, 4 positive ions and hydrogen recombination lines

G31.41+0.31

 First detection of glycolaldehyde outside the Galactic Center by Beltrán et al. (2009)

G31.41+0.31

glycolaldehyde (8 atoms)

ethylene glycol (10 atoms)

Ethylene glycol (CH₂OH)₂ in G31

GBT

SMA

Ethylene glycol (CH₂OH)₂ in G31

IRAM 30m

GBT

SMA

More COMs in G31.41

More COMs in G31.41

Observational results: EG/GA abundance ratio

Source	[EG/GA]				
Hale-Bopp (comet)	>6				
Lemmon (comet)	>3				
Lovejov (comet)	>5				
IRAS 16293-2422	1				
NGC 1333 IRAS2A	5				
NGC7129 FIRS2	2				
SgrB2N	1.3				
G31.41+0.31	5				
Orion hot core	>10				
W51e2	>16				
G34.3+0.2	>6				
G-0.02, G-0.11,G+0.693	1.2-1.6				

Hollis+00,02, Crovisier04a, Fuente+04, Requena-Torres08, Beltrán+09, Jørgensen+12, Belloche+13 Maury+14, Biver+14, Coutens+15, Brouillet+15, Lykke+15, Taquet+15, Rivilla+17a.

Observational results: abundances ratios

What can be infer about the formation of COMs from the results of the observations?

Observational results: abundances ratios

What can be infer about the formation of COMs from the results of the observations?

If two species are chemically linked (i.e. they have a common precursor and/or one is formed from the other) their relative abundance should be nearly constant regardless the luminosity.

Chemical pathways

DME and MF formed from the common precursor CH₃O

Chemical pathways

DME and MF formed from the common precursor CH₃O

MF formed directly from DME in gas-phase (Balucani+2015)

GAME OF REACHONS

GAME OF REACHONS

GAME OF REACHONS

Chemical routes

Phosphorus-bearing molecules

Phosphorus: key to Life

Chemical reactivity Structural stability

- Hydrogen
- Oxygen
 - Nitrogen
 - Carbon
 - Phosphorus

- Hydrogen
 - Oxygen
 - Nitrogen
- Carbon
- Phosphorus

- Oxygen
- Nitrogen
- Carbon
- Phosphorus

Oxygen

- Nitrogen
- Carbon
- Phosphorus

RESEARCH ARTICLE

SPACE SCIENCES 2016

Prebiotic chemicals—amino acid and phosphorus in the coma of comet 67P/Churyumov-Gerasimenko

Rosetta

hilae

eesa

Kathrin Altwegg,^{1,2}* Hans Balsiger,¹ Akiva Bar-Nun,³ Jean-Jacques Berthelier,⁴ Andre Bieler,^{1,5} Peter Bochsler,¹ Christelle Briois,⁶ Ursina Calmonte,¹ Michael R. Combi,⁵ Hervé Cottin,⁷ Johan De Keyser,⁸ Frederik Dhooghe,⁸ Bjorn Fiethe,⁹ Stephen A. Fuselier,¹⁰ Sébastien Gasc,¹ Tamas I. Gombosi,⁵ Kenneth C. Hansen,⁵ Myrtha Haessig,^{1,10} Annette Jäckel,¹ Ernest Kopp,¹ Axel Korth,¹¹ Lena Le Roy,² Urs Mall,¹¹ Bernard Marty,¹² Olivier Mousis,¹³ Tobias Owen,¹⁴ Henri Rème,^{15,16} Martin Rubin,¹ Thierry Sémon,¹ Chia-Yu Tzou,¹ James Hunter Waite,¹⁰ Peter Wurz¹

Phosphorus and glycine recently detected in the 67P comet !

These prebiotic ingredients are present in the pristine material of our solar system RESEARCH ARTICLE

SPACE SCIENCES 2016

Prebiotic chemicals—amino acid and phosphorus in the coma of comet 67P/Churyumov-Gerasimenko

Rosetta

hilae

cesa

Kathrin Altwegg,^{1,2}* Hans Balsiger,¹ Akiva Bar-Nun,³ Jean-Jacques Berthelier,⁴ Andre Bieler,^{1,5} Peter Bochsler,¹ Christelle Briois,⁶ Ursina Calmonte,¹ Michael R. Combi,⁵ Hervé Cottin,⁷ Johan De Keyser,⁸ Frederik Dhooghe,⁸ Bjorn Fiethe,⁹ Stephen A. Fuselier,¹⁰ Sébastien Gasc,¹ Tamas I. Gombosi,⁵ Kenneth C. Hansen,⁵ Myrtha Haessig,^{1,10} Annette Jäckel,¹ Ernest Kopp,¹ Axel Korth,¹¹ Lena Le Roy,² Urs Mall,¹¹ Bernard Marty,¹² Olivier Mousis,¹³ Tobias Owen,¹⁴ Henri Rème,^{15,16} Martin Rubin,¹ Thierry Sémon,¹ Chia-Yu Tzou,¹ James Hunter Waite,¹⁰ Peter Wurz¹

Phosphorus and glycine recently detected in the 67P comet !

These prebiotic ingredients are present in the pristine material of our solar system

What about Phosphorus in the ISM?

• P is though to be synthesised in massive stars and injected to the ISM through supernova explosions (Koo et al., 2013).

• It is barely detected in space

P+ in several diffuse clouds (Jura & York 1978)

PN, PO, CP, HCP, C₃P and PH₃ in circumstellar envelopes of evolved objects

• P is though to be synthesised in massive stars and injected to the ISM through supernova explosions (Koo et al., 2013).

• It is barely detected in space

P+ in several diffuse clouds (Jura & York 1978)

PN, PO, CP, HCP, C₃P and PH₃ in circumstellar envelopes of evolved objects

Little is known about the chemistry of Phosphorus

• P is though to be synthesised in massive stars and injected to the ISM through supernova explosions (Koo et al., 2013).

• It is barely detected in space

P+ in several diffuse clouds (Jura & York 1978)

PN, PO, CP, HCP, C₃P and PH₃ in circumstellar envelopes of evolved objects

Little is known about the chemistry of Phosphorus

What about star-forming regions?

Only a very few detections of PN towards hot cores (Turner&Bally 1987, Ziurys & Friberg 1987, Turner et al.1990)

• P is though to be synthesised in massive stars and injected to the supernova explosions (Koo et al., 2013).

• It is barely detected in *1 THE ASTROPHYSICAL JOURNAL, 321:L75-L79, 1987 October 1 0:1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. 0:1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. DETECTION OF INTERSTELLAR PN: THE FIRST ELLAR MEDIUM

AT & T Bell Laboratories, Holmac, April 17 AT & T Bell Laboratories, Holmac, 1987 April 17 Received 1987 March 13; accepted 1987 April 17 Toms? Received 1987 March 13; accepted 1987 April 17 Toms? Toms? Toms? Toms? Toms? Toms?

• P is though to be synthesised in massive stars and injected to the ISM through supernova explosions (Koo et al., 2013).

• It is barely detected in the ISM

P+ in several diffuse clouds (Jura & York 1978)

PN, PO, CP, HCP, C₃P and PH₃ in circumstellar envelopes of evolved objects

Little is known about the chemistry of Phosphorus

What about star-forming regions?

Only a very few detections of PN towards hot cores (Turner&Bally 1987, Ziurys & Friberg 1987, Turner et al.1990) **Previous searches of PO were unsuccessful**

• P is though to be synthesised in massive stars and injected to the ISM through supernova explosions (Koo et al., 2013).

• It is barely detected in the ISM

P+ in several diffuse clouds (Jura & York 1978)

PN, PO, CP, HCP, C₃P and PH₃ in circumstellar envelopes of evolved objects

Little is known about the chemistry of Phosphorus

What about star-forming regions?

Only a very few detections of PN towards hot cores (Turner&Bally 1987, Ziurys & Friberg 1987, Turner et al.1990) **Previous searches of PO were unsuccessful**

Our group started a project to study P-bearing molecules in star-forming regions

P-bearing molecules in a sample of massive dense cores

• PN(2-1) at 93.9 GHz in a sample of 27 massive dense cores

P-bearing molecules in a sample of massive dense cores

• PN(2-1) at 93.9 GHz in a sample of 27 massive dense cores

What about PO ?

What about PO ?

Fontani, Rivilla et al. (2016)				
source	Δv $(km s^{-1})$	$N(PN)^{o} \times 10^{11} \text{ cm}^{-2}$	$N(PO)^{o} \times 10^{11} \text{ cm}^{-2}$	
00117-MM2	1.6^a			
AFGL5142-EC	3.8(0.6)	5.8	< 20	
05358-mm3	6(2)	10	< 13	
G034–G2	1.64			
G034–F2	1.6^{a}			
G034–F1	1.6^{a}			
G028-C1	1.6^{a}			
I20293-WC	1.6^{a}			
I22134–G	1.6^{a}			
I22134-B	1.6^{a}			
-				
00117-MM1	2.9^{a}			
AFGL5142-MM	3.7(0.6)	12	< 12	
05358-mm1	2.9^{a}			
18089-1732	3(1)	6.3	< 6.3	
$18517 + 0437^{d}$	< 1.8(0.7)	4.4	< 4.4	
G75–core	2.9^{a}			
I20293-MM1	2.9^{a}			
I21307	2.9^{a}			
I23385	2.9^{a}			
G5.89–0.39	5.2(0.8)	14.5	< 14	
19035-VLA1	3.5^{a}			
$19410 + 2336^{d}$	<1.6(0.4)	3.3	< 3.3	
ON1	2.9(0.5)	9.5	< 6.3	
I22134-VLA1	3.5^{a}			
23033 + 5951	3.5^{a}			
NGC7538-IRS9	3.5^{a}			

Not detectedGood constraint on upper limits

What about PO ?

Fontani, Rivilla et al. (2016)				
source	Δv (km s ⁻¹	$N(PN)^{o} \times 10^{11} \text{ cm}^{-2}$	$N(PO)^{o} \times 10^{11} \text{ cm}^{-2}$	
00117-MM2	1.6 ^a			
AFGL5142-EC	3.8(0.6)	5.8	< 20	
05358-mm3	6(2)	10	< 13	
G034-G2	1.6ª			
G034-F2	1.6 ^a			
G034-F1	1.6 ^a			
G028-C1	1.6 ^a			
I20293-WC	1.6^{a}			
I22134-G	1.6^a			
I22134-B	1.6^{a}			
00117-MM1	2.9^{a}			
AFGL5142-MM	3.7(0.6)	12	< 12	
05358-mm1	2.9^{a}			
18089-1732	3(1)	6.3	< 6.3	
$18517 + 0437^{d}$	<1.8(0.7	4.4	< 4.4	
G75-core	2.9^{a}			
I20293-MM1	2.9^{a}			
I21307	2.9^{a}			
I23385	2.9^{a}			
G5.89-0.39	5.2(0.8)	14.5	< 14	
19035-VLA1	3.5^{a}			
$19410 + 2336^{d}$	<1.6(0.4)	3.3	< 3.3	
ON1	2.9(0.5)	9.5	< 6.3	
I22134-VLA1	3.5^{a}			
23033 + 5951	3.5^{a}			
NGC7538-IRS9	3.5^{a}			

Not detectedGood constraint on upper limits

PO could be as abundant as PN

Searching for PO

• PN brightest detections of 2 massive star-forming regions.

Searching for PO

• PN brightest detections of 2 massive star-forming regions.

New IRAM 30m observations

• 3 PO quadruplets at 1, 2 and 3mm.

Frequency (GHz)	Transition	$S_{ij}\mu^2$ (D ²)	E_{up} (K)	
J=	$J=5/2-3/2, \Omega=1/2$			
108.99845	F=3-2, l=e	9.9	8.4	
109.04540	F=2-1, l=e	6.4	8.4	
109.20620	F=3-2, l=f	9.9	8.4	
109.28119	F=2-1, l=f	6.4	8.4	
J='	$7/2 - 5/2, \Omega =$	1/2		
152.65698	F=4-3, l=e	13.6	15.7	
152.68028	F=3-2, l=e	10.1	15.7	
152.85545	F=4-3, l=f	13.6	15.7	
152.88813	F=3-2, l=f	10.1	15.7	
J=1	$1/2 - 9/2, \Omega =$	=1/2		
239.94898	F=6-5, l=e	20.9	36.7	
239.95810	F=5-4, l=e	17.4	36.7	
240.14106	F=6-5, l=f	20.9	36.7	
240.15253	F=5-4, l=f	17.4	36.7	

First detections of PO in star-forming regions

Rivilla et al. 2016

3 mm

Freq (GHz)

PO and PN physical parameters

	N (x10 ¹³ cm ⁻²)	Abundance (10 ⁻¹⁰)
PN	0.2-2.1	0.4-1.1
РО	0.6-4.0	1.2-2.0

PO is a factor 2-3 more abundant than PN !

PO and PN physical parameters

	N (x10 ¹³ cm ⁻²)	Abundance (10 ⁻¹⁰)
PN	0.2-2.1	0.4-1.1
РО	0.6-4.0	1.2-2.0

PO is a factor 2-3 more abundant than PN !

Lefloch et al. (2016) also found PO/PN~3 in a protostellar shock

- Very little is known about P-chemistry.
- PN and PO has been already included in the chemical network to explain our detections.

- Very little is known about P-chemistry.
- PN and PO has been already included in the chemical network to explain our detections.
- The two P-bearing molecules are chemically related and form purely in a sequence of **gas-phase ion-molecule** and **neutral-neutral** reactions during the cold collapse phase.

PO formation

GAME OF REACTIONS

PN formation

$$H_{3}O^{+} + P \longrightarrow HPO^{+} + H_{2}$$

$$HPO^{+} + e^{-} \longrightarrow PH + O$$

$$HPO^{+} + e^{-} \longrightarrow PH + H$$

$$P^{+} + H_{2} \longrightarrow PH_{2}^{+}$$

$$PH_{2}^{+} + e^{-} \longrightarrow PH + H$$

 $O + PH \longrightarrow PO + H$

Cold starless phase

 $N + PO \longrightarrow PN$ $\perp O$

• The abundance of H₃O⁺ increases:

GAME OF REACTIONS

$$\rm PN + H_3O^+ \longrightarrow \rm HPN^+ + H_2O$$

• The abundance of H_3O^+ increases:

GAME OF REACTIONS

P-bearing molecules: Chemical modelling

• The abundance of H_3O^+ increases:

GAME OF REACTIONS

P-bearing molecules: Chemical modelling

• The abundance of H_3O^+ increases:

GAME OF REACTIONS

P-bearing molecules: Chemical modelling

• The abundance of H_3O^+ increases:

GAME OF REACTIONS

PN is gradually destroyed and PO is additionally produced

Rivilla et al. 2016.

Rivilla et al. 2016

Rivilla et al. 2016

Rivilla et al. 2016

Multi-transition PN analysis: the full sample (18 sources)

(Mininni et al., in prep.)		PN(2-1)	PN(3-2)	PN(6-5)
	05358-mm3	\checkmark	\checkmark	×
	AFGL5142-EC	\checkmark	\checkmark	×
	G034-G2/A	×	×	×
	18517+0437	\checkmark	\checkmark	\checkmark
	AFGL5142-MM	\checkmark	\checkmark	×
	18089-1732	\checkmark	\checkmark	×
	I20293-MM1/B	×	X	×
	G75-core	X		×
	G5.89-0.39			\checkmark
	19035-VLA1	×	X	×
	19410+2336	\checkmark		×
	ON1	\checkmark		
	G10.47+0.03	_	\checkmark	×
	G24.78+0.08	_		×
	G29.96-0.02	_		×
	G31.41+0.31	_	\checkmark	\checkmark
	W3OH	-		\checkmark
	W51	_	\checkmark	\checkmark

The first stars

Grazie Francesco **Continueremo** a osservare il cielo di Arcetri e a rimanere stupiti dai suoi misteri...

Young stellar clusters

Protostellar and pre-main sequences We will continue to observe Arcetri's sky and to be amazed by its mysteries...

The evolution of molecular clock

The first stars

Grazie Francesco **Continueremo** a osservare il cielo di Arcetri e a rimanere stupiti dai suoi misteri...

Young stellar clusters

Protostellar and pre-main sequences We will continue to observe Arcetri's sky and to be amazed by its mysteries...

The evolution of molecular clock

The formation of prebiotic molecules in star-forming regions

Víctor M. Rivilla Osservatorio Astrofisico di Arcetri, OAA-INAF

.....

Francesco's Legacy, Florence, June 5-9 2017