Formation and Structure of Magnetized Protoplanetary Disks

Susana Lizano IRyA, UNAM

Francesco's Legacy: Star Formation in Space and Time, Florence, June 5-9 2017 *The mass-to-magnetic flux ratio determines the relevance of magnetic support in cloud cores*

 $\lambda = 2\pi G^{1/2} M/\Phi; \quad \lambda > 1$ instability.

Polarized dust emission from circumstellar disks

SMA 878 μ m subarcsec observations of the disk of IRAS 16293 -2422B protostar find B $_{\phi}$ consistent with field line wrapping (Rao + 2014).

Also L1527 (Segura-Cox 2015).

But scattered light can be important at mm (Katoaka +15).

Aligned dust emission vs dust scattering

Katoaka + 2015; *Yang* + 2016

Polarized mm emission due to dust self-scattering

The HL Tau disk

(*Brogan et al. 2015*).

polarization at 1.3*mm* (*Stephens et al.* 2015). *But Yang* +16.

Collapse of a rotating magnetized core: the naive expectation

from Crutcher (2006)

no B field ($\lambda = \infty$)

Fromang et al. (2006)

centrifugal disk

with B field ($\lambda = 2$)

magnetic pseudo-disk (not supported centrifugally)

top view

side view

The explanation

In ideal MHD, during gravitational collapse, B trapped in the central star acquires a split monopole configuration => catastrophic magnetic braking!

split monopole

Galli et al. (2006)

 $B_r \sim a^3 t / (G^{1/2} r^2)$

 $v_{\varphi} \sim -r^{1/2}$

side view: pseudodisk

Gravitational collapse with ambipolar diffusion, Ohmic dissipation and Hall effect (e.g., Li et al. 2011.) Small disks can form $R \sim 1AU$ (Tsukamoto et al. 2015) unless unstable cloud (Machida et al. 2016).

Alternative solutions:

- Misalignement between B and Ω reduces braking torque (Hennebelle & Ciardi 2009; Joos + 2012; Krumholz +2013) → requires strong misalignement <u>and</u> low magnetization (e.g., Hull + 2014).
- The disk could grow when the envelope has been depleted and magnetic braking becomes inefficient (e.g., Machida+2011). But Tobin+12; Murillo+13;Codella+14
- *Turbulence enhances the rate of field reconnection and diffusion* (*e.g., Seifried* +2012, *Santos-Lima*+2012-13) → requires high *levels of turbulence, caution with numerical diffusion.*
- *Removal of small grains increases AD (Zhao+2016).*
- *CRs cannot penetrate wrapped field lines (Galli+2016).*

Disk Formation

The disk will drag the magnetic field from the parent core that has $\lambda_{core} \sim 1-4$.

One expects **B** *dissipation* $\lambda_{disk} \approx 4-16$? (*Shu*+2007; *Hennebelle* & *Fromang* 2007).

A protostar has $\lambda_* \approx 10^3 - 10^4$, thus, the magnetic field brought in during gravitational collapse remains in the disk, the mass accretes to the star.

(not flux/ang. mom.)

R

• Increase stability against gravitational perturbations: although B enforces sub-keplerian rotation, it also increases magnetic pressure + tension $Q_M > Q_T$ (Lizano+2010).

Vertical structure of magnetized accretion disks subject to irradiation + viscous and resistive heating. Lizano, Tapia, Boehler, D'Alessio 2016

Table 1. Parameters of the YSOs				
YSO	\dot{M}_d	M_d	R_{\bullet}	L_c
	$(M_{\odot} { m yr}^{-1})$	(M_{\odot})	(R_{\odot})	(L_{\odot})
LMP	2×10^{-6}	0.20	3	7.1
T Tauri	1×10^{-8}	0.03	2	0.93
FU Ori	$2 imes 10^{-4}$	0.02	7	230

Different heating mechanisms dominate the midplane

- •Low mass protostar disks \leftarrow viscous heating
- •*FU Ori disks ← resistive heating*
- *T Tauri disks* \leftarrow stellar irradiation.

Magnetic compression

T Tauri disk is highly compressed for $\lambda_{sys} = 4$, H/R ~ 0.01 For $\lambda_{sys} = 12$, H/R ~ 0.1, similar to inferred values (e.g., Grafe et al. 2013).

External heating vs internal heating

Hot atmosphere: F_{irr} is absorbed

LMP Disk ($\theta = 60^{\circ}$)

 $\lambda = 24$

Tapia & Lizano 2017 Emission increases with λ_{sys} *: the disks are hotter and denser*

HH 212 Class 0 source in Orion with ALMA Lee+2017

Disk ionization with X rays \rightarrow B coupling and MRI (*Glassgold* +2017)

Ionization: x_e , x_M^+ , x_m^+ , x_d^+

Elsasser number = $v_A^2/\eta \Omega$ $\eta_{Ohm} \rightarrow B$ -plasma coupling $\eta_{AD} \rightarrow ions$ -neutrals coupling

T Tauri disk $\lambda = 12$ Dead zone

e.g., Flock + 2012

Umebayashi & Nakano 1980

Summary

- *B* fields observed in molecular clouds hinder the formation of centrifugally supported disks. Magnetic field dissipation, misalignment, envelope depletion, turbulence, proposed to avoid catastrophic braking and form rotationally supported protoplanetary disks.
 - *B fields modify the disk structure: sub-keplerian rotation and magnetic compression.*
- Both diffusive processes in magnetized disks (v, η) dissipate energy and heat the disks.
- The structure and emission of magnetized disks constrains λ_{disk}
- ALMA will be able to measure B, λ_{disk} and Ω and test these models.

Thank you!