

PMS evolution: a tale of mass and angular momentum

J. Bouvier

fax 055/23.06.364

yssey,

PMS evolution

A variety of interconnected processes

- Mass accretion / Mass ejection (jets, disk winds, stellar winds, interface winds, CME's, etc.)
- Disk accretion / Star-disk interaction (star, inner disk, inner planets, magnetospheric accretion)
- Accretion shock / Disk evolution (high-energy irradiation, chemistry)
- Magnetic fields / Angular momentum (star-disk interaction, winds, magnetospheric accretion)
- Structural evolution / Lithium depletion (differential rotation, magnetic dynamos, radius anomaly)

Angular momentum evolution

• All these processes will impact AM evolution (accretion, winds and outflows, magnetic fields, star-disk interaction, structural evolution, planet formation/migration, etc.)

→Use AM evolution to probe the physical processes at work in young stars.

• What is the initial AM distribution of young stars? How does it evolve with time?

PMS rotational evolution

Large initial scatter: protostellar evolution

Mass-dependent initial conditions and evolution

Significant evolution of the rotational period distributions during PMS

Compilation from Roquette, Bouvier, Alencar+17 A&A

Kepler/K2: Pleiades & Praesepe

Pleiades ~125 Myr

Praesepe ~700 Myr

How to account for PMS rotational evolution ?

 1-10 - 100 Myr rotational period distributions : initial spread -> dichotomy -> anamorphosis

Moraux, Artemenko, Bouvier+13

AM evolution models

- A number of models are available, which differ slightly, but have the same ingredients, namely:
 - (1) Initial AM spread: 1-10 days initial periods
 - 2 Star-disk "locking" assumption: constant angular velocity while accreting from the disk
 - ③ AM loss by magnetic winds and differential core/ envelope PMS spin-up

AM evolution models

Evolution of angular momentum + lithium-rotation connection -> constraints on disk lifetimes, mass-loss rates, magnetic braking, and internal transport processes

AM evolution models: implications

- Star-disk locking (1-5 Myr):
 - Longer disk lifetime (~5 Myr) in initially slow rotators
 - Shorter disk lifetime (~2 Myr) in initially fast rotators Why ? Does the protostellar disk mass dictates both the overall disk lifetime and the initial stellar AM ?
- Core-envelope decoupling (5-100 Myr)
 - Larger core-envelope decoupling in slow rotators -> rotational mixing -> more lithium depletion

Enhanced PMS lithium burning in slow rotators ?

The lithium-rotation connection

Lithium abundances and rotation rates are inversely correlated in the PMS up to ZAMS

Is the lithium-rotation pattern a consequence of "disk locking"?

Francesco's inspiration?

Empirical evidence for disk locking

Accreting stars are more likely to be slow rotators than non accreting ones.

CSI2264: UV excess (accretion shock)

PMS rotational evolution: simulations

Initial period distribution

Vasconcelos & Bouvier 2015

Monte Carlo simulations: an initial rotational period distribution is evolved forward in time, assuming:

- accreting stars remain at constant angular velocity (no spin up)
- non-accreting stars spin up as they contract

PMS star-disk interaction

Kurosawa & Romanova 2013

Why do young stars rotate slowly ?

How to compensate for the accretion spin-up torque ?

 $\dot{J}_{\rm acc} = \dot{M}_{\rm acc} R_t^2 \Omega_{\rm d}$

T Tauri stars have strong magnetic fields that truncate the inner disk at a distance :

$$\frac{r_{\rm t, th}}{R_*} \simeq 2 \ m_{\rm s}^{2/7} B_*^{4/7} \dot{M}_a^{-2/7} M_*^{-1/7} R_*^{5/7}$$

Bessolaz, Zanni, Ferreira+ 2008

Can the magnetic star-disk interaction brake the central star?

Star-disk connection

Gosh & Lamb 1979; Collier Cameron et al. 1995

Magnetospheric ejections

Zanni & Ferreira 2009, 2013

Accretion-powered stellar winds

Matt & Pudritz 2005

Star-disk interaction

Stellar magnetic field vs. mass accretion rate

- What do we know of PMS magnetic fields ?
- How do they evolve during PMS ?
- How (un)predictable are mass accretion rates ?
- How do they depend on stellar properties ?

YSOs magnetic fields

- Spectropolarimetry → field strength and topology (e.g., Donati et al., Johns-Krull et al.)
- In YSOs, the magnetic fields range from a few 100G to a few kG
- Magnetic field topology evolves during the PMS and seems to primarily depend on internal structure (convective/radiative)
- Strong implications for star-disk interaction and angular momentum evolution

Evolution of stellar magnetic fields

Steady decrease of magnetic field strength from the early PMS through the ZAMS and MS

PMS magnetic field evolution

Strong magnetic fields in YSOs primarily linked to their fully convective interior

1e+03 1.0 1.0 / Poloidal (colour) C 6878-0 4e+02 0.8 0.6 2e+02 $\stackrel{(\odot)}{=}$ 0.5 $\stackrel{(\odot)}{=}$ T 5164-567 Axisymmetry (shape) 0.4 1 6e+01 0.2 * 3e+01 TYC 0486-4943 0.0 1e+01 × 5500 5000 4500 4000 $T_{eff}(K)$

Evolution of magnetic fields in solar-type stars

Folsom, Petit, Bouvier+16, Donati, Gregory, Alencar+13 Gregory, Donati, Morin+12

Strong magnetic fields, mostly dipolar, in fully convective PMS stars (-> star-disk interaction)

Mass accretion rate: NGC 2264

Mass accretion rate measured from UV excess

Mass accretion rate scatter Age dispersion?

Venuti, Bouvier, Flaccomio+14

Mass accretion rate scatter Different accretion regimes?

Different accretion regimes onto the star? How does it relate to magnetic topology?

Investigating the star-disk boundary: magnetospheric accretion

de Sá, Chièze, Stehlé+ 2014

Magnetospheric accretion

Long, Romanova, & Lovelace 2007

- How is the disk material accreted onto the star?
- How stable vs. dynamical is the magnetospheric accretion process?
- How does it impact the inner disk structure?
- How does it modify PMS evolution?

Optical (CoRoT, blue) and IR (Spitzer, red) not always correlated!

Star-disk interaction: the magnetospheric accretion process

e.g., V2129 Oph

A grazing line-of-sight: AA Tau

HST/STIS: Cox, Grady, Hammel+13

ALMA: Loomis, Oeberg, Andrews+17

~4 mag additional extinction on the line-of-sight since 2011

Bouvier, Grankin, Ellerbroek+13

AA Tau: the prototype of dippers

Supports tilted stellar magnetosphere + inner disk warp + accretion columns + accretion shock, all occurring at the same azimuth, i.e., physically connected.

Bouvier, Alencar, Boutelier+07

Inclined magnetosphere

CSI2264: Coordinated Synoptic Investigation of NGC 2264 A REVOLUTION IN SPACE BASED MONITORING OF YOUNG STARS

Spitzer: 30d @ 3.6, 4.5 μm

- CoRoT: 40d, optical
- Chandra/ACIS: 300ks (3.5d)
- MOST: 40d, optical
- VLT/Flames: ~20 epochs
- Ground-based monitoring U-K bands: ~3 months

(December 2011)

P.I. J. Stauffer, G. Micela

NGC 2264 Distance ~ 760 pc Age ~ 3-5 Myr Known members: ~2000

(includes CFHT/MegaCam u + r-band monitoring)

The revolution of space photometry

- CoRot, Spitzer, Kepler K2, soon: Gaia, TESS, PLATO...
- CSI 2264: YSOs variability classes (Cody+, Stauffer+ 2014-2017 paper series)
 - Spotted, dippers, bursters, stochastics, and some others...
- Not a mere classification, but the reflection of different physical processes / accretion regimes / circumstellar absorption events.

Optical variability

Stable vs. unstable accretion regimes?

Cody, Stauffer, Baglin, Micela, Rebull+14

Star-disk interaction: is that all ?

Halting the planetary migration ? "Hot Jupiters" (or Saturns...)? + inner rocky planets (cf. Kepler)

Star – planet(s) – inner disk interactions (ERC SPIDI)

(Note: postdoc and PhD positions to open at IPAG in early 2018)

Conclusion

- PMS evolution is affected by a variety of non-standard processes: accretion, magnetic fields, rotation.
- A full understanding of the star-disk interaction (accretion regimes, long-term evolution) is needed to ultimately develop realistic PMS evolution models.
- Additional complications on the horizon: Earth- and Neptune-like planets embedded in the inner disk; cf. Kepler.

→Next chapter: Star-Planets-Inner Disk Interactions (SPIDI), a whole new avenue to explore.