Fragmentation and disk formation in high-mass star formation

Henrik Beuther, MPIA

Francesco's legacy, star formation in space and time, June 2017

Malcolm: What are the accretion rates?

Malcolm: What are the accretion rates? Francesco: Is high-mass star formation first or last?

Malcolm: What are the accretion rates? Francesco: Is high-mass star formation first or last?

Fragmentation and disk formation during high-mass star formation

Survey (PI: H. Beuther):

- Large sample of high-mass star-forming regions
- 0.2"-0.3" ~ 500AU
- (sub)mm line and continuum emission
- >300 hours large program at NOEMA/PdBI

Northern Extended Millimeter Array (NOEMA) Plateau de Bure Interferometer (PdBI)

Dense cores in 1.3mm continuum

Astronomical Units (AU)

Dense cores in 1.3mm continuum

Beuther et al. in prep.

Offset (AU)

Beuther et al. in prep.

Offset (AU)

The W3IRS4 region

The W3IRS4 region

(Mottram et al. in prep., poster #60)

Large-scale temperature distribution

(Mottram et al. in prep., poster #60)

Beuther et al. in prep.

Offset (AU)

Beuther et al. in prep.

Offset (AU)

Velocity structure of W3(H2O)

Individual fragments

CH3CN spectra

R.A. Offset (arcsec)

Toomre Q map

The hot core G351: ALMA@690GHz & 0.06"

The hot core G351: ALMA@690GHz & 0.06"

Beuther et al. 2017

The hot core G351: ALMA@690GHz & 0.06"

Beuther et al. 2017

Conclusions

- Different modes of fragmentation
 - Isolated cores vs. highly fragmented clumps
 - Core fragmentation on large scales and disk fragmentation on small scales
- Kinematics important on large and small scales
- Temperature structure can be derived on all scales