ACCRETION DISKS IN LUMINOUS Young stellar objects

MAITE BELTRÁN & WILLEM-JAN DE WIT THE ASTRONOMY AND ASTROPHYSICS REVIEW, 2016

Astron Astrophys Rev (2016) 24:6 DOI 10.1007/s00159-015-0089-z

REVIEW ARTICLE

Accretion disks in luminous young stellar objects

M. T. Beltrán¹ · W. J. de Wit²

Received: 27 July 2015 / Published online: 11 January 2016 © Springer-Verlag Berlin Heidelberg 2016

Abstract An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and, therefore, predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

Keywords Accretion: accretion disks · Techniques: high angular resolution · Techniques: interferometric · Stars: formation

SUMMARY

- Disks found near PMS stars up 8 M_☉, and in Keplerian rotation (e.g., HD163296: de Gregorio-Monsalvo+ 2013)
- ALMA shows discontinuous radial and azimuthal dust distributions (Isella+ 2016, Fedele+ 2017) and dissimilar distributions of dust and gas: signatures of protoplanets
- Near-IR scattered light images (with VLT/SPHERE or NACO, dust scattering) in HAeBe stars indicate large disk cavities (>5AU) which are at the base of the differences in IR SEDs (Garufi+ 2017).

Fedele+ (2017)

 104-103 au
 103- 102 au
 102-10 au
 10-0.1 au

 (subjmm-cm
 (subjmm-cm
 NIR-MIR
 NIR-MIR

$L_{\text{bol}} < 10^5 \text{ L}_{\odot} \Rightarrow M_{\bigstar} \lesssim 25 \text{ M}_{\odot}$

Kraus+ (2010)

de Wit+ (2011)

IRAS 17216-3801: 20 and 18 *M*_☉

10 ⁴ -10 ³ au	10 ³ - 10 ² au	10 ² -10 au	10-0.1 au	
(sub)mm – cm	(sub)mm – cm	NIR – MIR	NIR – MIR	

$L_{bol} < 10^5 L_{\odot} \hookrightarrow M_{\bigstar} \lesssim 25 M_{\odot}$

G35.20-0.74N

Beltrán+ (2014)

Beltrán+ (2014)

"DISKS"

Table 1. List of rotating disks around B-type (proto)stars

		.	• OH04 b	P	* 7				
	d	$L_{ m bol}$	$M_{\rm gas}^{\rm OH94~b}$	R	V _{rot}	$M^{c}_{\star Lyman}$	$M^{c}_{\star \text{ cluster}}$	ΔV	$M_{\rm out}$
Core	(kpc)	(L_{\odot})	(M_{\odot})	(au)	$({\rm km}~{\rm s}^{-1})$	(M_{\odot})	(M_{\odot})	$({\rm km \ s^{-1}})$	(M_{\odot}/yr)
IRAS 20126+4104	1.7	1×10^{4}	0.9	3600	1.3	7	12	3.0	1.3×10^{-3}
Cepheus A HW2	0.725	2.5×10^{4}	2.2	360	3.5	15	15	4.0	1.7×10^{-3}
GH2O 92.67+3.07	0.80	4.7×10^{3}	12	7200	1.2	6	9	3.0	2.7×10^{-4}
G35.20+0.74 N A	2.19	3×10^{4}	1.0	1500	1.5	_	16	4.5	_
G35.20+0.74 N B	2.19	3×10^{4}	0.9	2600	1.0	18	16	2.8	_
G35.03+0.35 A	3.2	6.3×10^{3}	0.75	2200	2.0	11	10	8.5	_
AFGL 2591 VLA3	1.0	2×10^{5}	0.41	400	2.2	16	32	1.5	_
AFGL 490	1.0	2×10^{3}	4.1	1600	1.3	8	7	3.0	_
IRAS 18162-2048 MM1	1.7	2×10^{4}	4.9	800	2.0	_	14	5.5	_
IRAS 18089–1732	3.6	3.2×10^{4}	68	3600	3.0	_	16.6	6.0^{n}	_
NGC7538S MM2	2.7	1.5×10^{4}	5.0	1000	1.0	_	13	4.0	_
NGC7538IRS1	2.7	8×10^{4}	18.0	1000	3.0	30	23	10.0	_
G192.16-3.82	2.0	3×10^{3}	11	2100	3.0	8	8	1.5	3.8×10^{-4}
IRAS 16547-4247	2.9	6.2×10^4	22	1500	1.7	_	21	7.6	_
IRAS 16562–3959	1.7	7×10^{4}	7.6	3000	2.2	15	22	5.0	_
NGC6334I SMA1 Main	1.7	1×10^{5}	37	280	5.1	_	25	8.0	_
NGC6334 I(N) SMA1b	1.3	1×10^{3}	4.3	800	3.5	_	5.5	8.8	_
IRAS 04579+4703	2.5	4×10^{3}	8	5000	1.0	7	8.5	3.6	1.7×10^{-4}
IRAS 18151–1208	3.0	2×10^{4}	43	5000	2.0	15	14	1.9	_
G23.01-0.41	4.6	1×10^{4}	41	6000	0.6	18	12	8.3	2.0×10^{-4}
IRDC 18223-1243	3.7	1×10^{2}	47	14000	1.5	_	_	1.8	5.5×10^{-3}
G240.31+0.07	5.3	3.2×10^4	133	10000	2.5	—	16.6	1.7	6.4×10 ⁻³

10³- 10² au 10²-10 au 10-0.1 au

10⁴-10³ au

- $L_{\rm bol} < 10^5 L_{\odot} \Rightarrow M_{\star} = 7-25 M_{\odot}$
- $R_{\rm disk}$ a few 100 10³ au
- $M_{\text{disk}} \sim \text{a few } M_{\odot} \Rightarrow M_{\text{disk}} \lesssim M_{\star}$

G351.77-0.54 (10⁴-10⁵ L_☉)

- Keplerian rotation?
- *M*★~ 4.5 -10 *M*⊙
- Disk of R ~ 250-500 au and M_{disk} ~0.1-0.5 M_{\odot}
- $M_{\text{disk}} \preceq M_{\star}$

- Keplerian flared disk of $R \sim 2000$ au and $M_{disk} \sim 8 M_{\odot}$
- $M_{\rm disk} \lesssim M_{\star}$
- 2.3 µm CO bandhead emission suggests a Keplerian disk of 10 au (llee+ 2013)
- Ilee+ (2016): G11.92-0.61

See Poster #71 on G23.01-0.41 (Alberto Sanna)

O - type

$L_{\text{bol}} > 10^5 \text{ L}_{\odot} \rightleftharpoons M_{\bigstar} > 25 \text{ M}_{\odot}$

- *R*_{toroid} several 1000 au
- $M_{\text{toroid}} \sim \text{a few 100} M_{\odot} \Rightarrow M_{\text{toroid}} \gg M_{\star}$
- M_{toroid} >> M_★ : No Keplerian rotation on scales of 10⁴ au. The gravitational potential of the system is dominated by the massive toroid not by central star.
- *M*_{toroid} > *M*_{dyn} suggests that toroids are not centrifugally supported, may be unstable and undergoing fragmentation and collapse.

Beltrán+ (2004, 2011), Furuya+(2008), Keto & Klaassen (2008), Sollins + (2005), Zapata+(2008)

10 ⁴ -10 ³ au	10 ³ - 10 ² au	10 ² -10 au	10-0.1 au
(sub)mm – cm	(sub)mm – cm	NIR – MIR	NIR – MIR

$L_{bol} > 10^5 L_{\odot} \Rightarrow M_{\bigstar} > 25 M_{\odot}$

Cesaroni+ (2017)

0.2" ALMA (400 au - 1600 au resolution)

 104-103 au
 103- 102 au
 102-10 au
 10-0.1 au

 (sub)mm-cm
 (sub)mm-cm
 NIR-MIR
 NIR-MIR

$L_{bol} > 10^5 L_{\odot} \Rightarrow M_{\bigstar} > 25 M_{\odot}$

Keplerian-like rotation

Rotation, but Keplerian?

Cesaroni+ (2017)

$L_{bol} > 10^5 L_{\odot} \rightleftharpoons M_{\bigstar} > 25 M_{\odot}$

0.2" ALMA (400 au - 1600 au resolution)

Cesaroni+ (2017)

- Disks found at intermediate evolutionary stage
- At later evolutionary stage, the molecular gas is dispersed
- For the younger sources, emission of disks difficult to disentangle from that of the envelopes. Disks might start small and grow up with time

STABILITY

- 41 rotating structures around O and B-type
- 30 rotating structures around IMs
- *M*_{disk} < 0.3 *M*_★ and Toomre's stability parameter Q > 1 → accretion disks are gravitationally stable (Shu+ 1990; Laughlin & Bodenheimer 1994; Yorke 1995; Toomre 1964)
- Herbig Ae + IRAS 20126+4104 (Cesaroni+ 2005), Cepheus A HW2 (Patel+ 2005), G35.20-0.74N (Sánchez-Monge+ 2013), G35.03+0.35 (Beltrán+ 2014), AFGL 2591 VLA3 (Wang+ 2012) accretion disks are stable against collapse + G351.77-0.54 (Beuther+ 2017) + AFGL 4176 (Johnston+ 2015)
- Toroids are unstable against axisymmetric instabilities

STABILITY

- 41 rotating structures around O and B-type
- 30 rotating structures around IMs
- *M*_{disk} < 0.3 *M*_★ and Toomre's stability parameter Q > 1 → accretion disks are gravitationally stable (Shu+ 1990; Laughlin & Bodenheimer 1994; Yorke 1995; Toomre 1964)
- Herbig Ae + IRAS 20126+4104 (Cesaroni+ 2005), Cepheus A HW2 (Patel+ 2005), G35.20-0.74N (Sánchez-Monge+ 2013), G35.03+0.35 (Beltrán+ 2014), AFGL 2591 VLA3 (Wang+ 2012) accretion disks are stable against collapse + G351.77-0.54 (Beuther+ 2017) + AFGL 4176 (Johnston+ 2015)
- Toroids are unstable against axisymmetric instabilities

DYNAMICS

- Toroids (M_{gas} >> M★) and disks are also dynamically different
- M★< 25 M_☉ + bona fide B-type Keplerian disks: M_{dyn}/M_{gas} > 1 → centrifugally supported
- $M_{\star}> 25-30 \ M_{\odot} \Rightarrow M_{\rm dyn}/M_{\rm gas} << 1$
- Toroids could never reach equilibrium and be transient entities with timescales of the order of t_{ff} ~10⁴ yr

- If structure rotates fast and t_{ff}/t_{rot} high → infalling material that incorporates into the fast rotating structure has enough time to settle into a centrifugally supported disk
- If structure rotates slowly and t_{ff}/t_{rot} low → infalling material does not have enough time to reach centrifugal equilibrium and the rotating structure is a transient toroid (rotation plays no role in their support)

DYNAMICS

- Toroids (M_{gas} >> M★) and disks are also dynamically different
- M★< 25 M_☉ + bona fide B-type Keplerian disks: M_{dyn}/M_{gas} > 1 → centrifugally supported
- $M_{\star} > 25-30 \ M_{\odot} \Rightarrow M_{dyn}/M_{gas} << 1$
- Toroids could never reach equilibrium and be transient entities with timescales of the order of t_{ff} ~10⁴ yr

- If structure rotates fast and t_{ff}/t_{rot} high → infalling material that incorporates into the fast rotating structure has enough time to settle into a centrifugally supported disk
- If structure rotates slowly and t_{ff}/t_{rot} low → infalling material does not have enough time to reach centrifugal equilibrium and the rotating structure is a transient toroid (rotation plays no role in their support)

INFALL VS. ACCRETION

1.Red-shifted absorption

2. $v_{inf} = v_{rot}$

- 3.Free-fall $\rightarrow \dot{M}_{inf} = M_{gas} t_{ff}$
- 4.Mass loss rate $\rightarrow \dot{M}_{out} = 20 \dot{M}_{jet} = 6 \dot{M}_{acc}$ (Tomisaka 1998; Shu+ 1999)

INFALL VS. ACCRETION

- 1.Red-shifted absorption
- 2. $v_{inf} = v_{rot}$
- 3. Free-fall $\rightarrow \dot{M}_{inf} = M_{gas} t_{ff}$
- 4. Mass loss rate $\rightarrow \dot{M}_{out} = 20 \dot{M}_{jet} = 6 \dot{M}_{acc}$ (Tomisaka 1998; Shu+ 1999)
- Infall rate increases with mass of central star
- M
 ^{inf} > M
 ^{independently} of method used

Beltrán & de Wit (2016)

INFALL VS. ACCRETION

- $\dot{M}_{inf} > \dot{M}_{acc}$ independently of method used
- Stellar multiplicity
- Infalling rate onto the disk different from accretion onto star → material piles up and results in disk masses which are tens to hundreds of solar masses. This is massive and suggests a gravitationally unstable diskinducing variable, "FUOri-like" accretion events onto the central object.

Beltrán & de Wit (2016)

FIRST DISK-MEDIATED ACCRETION BURST FROM A HMYSO

- S255 NIR 3: 2.4 $\times 10^4 L_{\odot}$ (~15 M_{\odot})
- NIR photometry reveals an increase in brightness of 2.5-3.5 magnitudes and NIR spectroscopy reveals emission lines typical of accretion bursts in low-mass protostars, but orders of magnitude more luminous.
- The energy released and the inferred massaccretion rate are also orders of magnitude larger.
- $\dot{M}_{\rm acc} \sim 5 \ge 10^{-3} M_{\odot}/{
 m yr}$ (for 20 M_{\odot} and 10 R_{\odot})

See Poster #36 (Caratti o Garatti)

- See also Kumar+ (2016)
- > Also NGC 6334I-MMI shows bursts at submm λ 's (Hunter+ 2017)

S255 NIR 3

Caratti o Garatti+ (2016)

SUMMARY

