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Key Steps

» Fragmentation of cloud into large scale
structures (filaments/ribbons, etc.)

» Formation of dense cores within larger
structures

» Core collapse to form hydrostatic protostar
» Disk formation, multiplicity, BDs, planets
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Herschel Observations
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Magnetic Fields and Filaments

28°20'00"

28°00'00" F

Declination (J2000)

27°00'00"
26°40'00"

26°20'00" |8 . SPIRE 250 pm

2 1 2
4"20™00" 4"24™00" 4"20™00"
Right Ascension (J2000) Right Ascension (J2000)

Palmeirim et al. (2012) Inferred B directions in
green.

4"24™00"

100

MJy/sr

Herschel
observations
of B211 and
B213 in Taurus
Molecular
Cloud.




Planck Collaboration Map of Taurus
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Subcritical turbulent cloud with ambipolar

diffusion (neutral-ion drift)

Partial
ionization due
to cosmic rays
in this model.

Mass-to-flux ratio
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Animation available at
Basu & Dapp (2010, Apd, 716, 427)



Molecular Cloud Scenario

Subcritical
common
envelope

Supercritical high-
density regions
assembled by large

cf. Nakamura & Li
scale flows/turbulence

(2005), EImegreen
(2007), Kudoh & Basu
(2008), Nakamura & Li
(2008), Basu , Ciolek,
Dapp. & Wurster (2009;
model shown here).
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Magnetic Riblbon Model
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Magnetic Riblbon Model
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Filoments and Fibers

» Filaments as
transcritical
collapsing

magnetized objects

» Sterile fibers as
transient subcritical
structures

Bailey, Basu and Caselli (2017)
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Striations
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» Alfvén modes
couple to
magnetosonic
modes

» Density
enhancements due
to magnetosonic
Mmodes

Tritsis and Tassis (2016)




3D non-ideal MHD simulations

supercritical
subcritical + linear

subcritical + nonlinear
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Column Density PDF (XPDF/NPDF) from

» Supercritical 2 shallow

power-law Npdf
consistent with B-E
spheres

Subcritical - steeper
power-law from
ambipolar diffusion
regulated evolution

Subcritical+turbulence
- lognormal plus
shallow power law at
high column density

Auddy, Basu, & Kudoh (2017)




» Does the CMF or NPDF have anything to do with
the IMF?

» Many low mass substellar objects being discovered
» In ONC, Drass et al. (2016) find evidence for

The Ongln ~ 920 low mass stars

~ 760 brown dwarfs
~ 160 planemos

of Stellar
Masses

“Face it—in this town, either you're a star or you're just another brown dwarf.”

Fig. 1 Cartoon from Mick Stevens published in the New Yorker magazine issue 01/08/1996
(Reprinted with permission by The Cartoon Bank)
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The Low Mass IMF

A need to avoid a reliance on Jeans mass to obtain arbitrarily low masses

Alternative: accretion growth starting from first stellar core masses ~ 10 -
10?2 M., plus a scenario for accretion termination. Parts of this scenario in
Zmnecher (1982), Adams & Fatuzzo (1996), Basu & Jones (2004), Bate &
Bonnell (2005), Myers (2009)

Stellar birthline (Stahler 1983) associated with onset of deuterium fusion
can play a role — outflows?

Ejections from multiple systems are a promising avenue especially for
lowest mass objects SSTomo’reIIos & Whitworth 2009; Basu & Vorobyov
2012; Vorobyov 2016




The Intermediate and High Mass IMF

» A power-law in f(m) = dN/dM ~ m-1*a naturally arises in an
accretion scenario if there is:

» An exponential distribution of accretion lifetimes (equally likely
stopping in all infervals). Characteristic fime t,.

» Exponential growth of mass accretion rate. Note observations e.g.,

Myers & Fuller (1992) find
M/M =7 . ~ constant

> Then a = 1y owin/Tsiop (BAsU & Jones 2004; Basu et al. 2015).
Empirically o ~ 1.




Summary of Key Poinfts

» Near-equilibrium filaments, tfransient fibers and striations
emerge naturally from simulations of magnetically
dominated molecular clouds

» Column density pdf provides a clear observable
distinction in power law profiles between supercritical
and subcritical (plus furbulent) core formation

» A distribution of accretion lifetfimes due to e.g., ejections
and outflows, along with late fime accretion growth
can in principle explain many features of the IMF



