Galaxy Evolution & Environment

observations meet simulations and theory

Department of Physics and Astronomy in Arcetri - Firenze 15-17 November 2017

Spatially resolved stellar populations of nearby galaxies: the overall age bimodality PNOIZAIN OF and the subtle nature of gradients in ETGs

STEFANO ZIBETTI

AOFISICA

INAF - Arcetri

INAF-OSSERVATORIO ASTROFISICO DI ARCETRI IN COLLABORATION WITH ANNA GALLAZZI, MICHAELA HIRSCHMANN, STÉPHANE CHARLOT, THE CALIFA COLLABORATION

Co-funded by the European Union via FP7 Career Integration Grant

SteMaGE

SPATIALLY RESOLVED STELLAR POPULATIONS WHAT FOR?

- Scaling relations exist involving global/average galaxy properties
- Bimodalities exist in global/average galaxy properties

however

- Galaxies are hardly homogeneously mixed systems
 - gradients in various (stellar population) properties exist, which retain, to different extents, memory of the local physical conditions in which e.g. stars were born or accreted
 - the youngest populations don't even have time to "talk" to the entire galaxy!
- How are global and local properties related? What causes what? (i.e. "which came first: the chicken or the egg?") Through which physical mechanisms?

SPATIALLY RESOLVED STELLAR POPULATIONS IN NEARBY GALAXIES

CALIFA, the Calar Alto Legacy Integral Field Survey

Sanchez+2012,2016 (DR3), Walcher+2014 - HTTP://CALIFA.CAHA.ES

- Integral field spectroscopic optical survey at PMAS-PPAK on CAHA 3.5m:
 - two spectral setups:
 - V500 [4240-7140Å] 6Å FWHM
 - V1200 [3650-4620Å] 2.3Å FWHM
- Diameter selected sample of ~600 nearby galaxies (0.005<z<0.03), all morphologies, full coverage of the color-mag plane
 - typical coverage out to >~2 Reff
 - resolution ~1 kpc
- Stellar continuum, main optical emission line
- Statistical representation of local Universe at log(M*/M_☉)>9.7 (Vmax volume correction) — representativeness drops at log(M*/M_☉)>11.4
- Complemented by SDSS imaging (by selection)

A BAYESIAN SPECTRO-PHOTOMETRIC APPROACH ("BI-STAIN", evolution of Kauffmann+2003, Gallazzi+2005, Zibetti et al. 2017)

- PRIOR distribution of models, characterised by:
 - synthetic observables
 - physical quantities

A BAYESIAN SPECTRO-PHOTOMETRIC APPROACH ("BI-STAIN", evolution of Kauffmann+2003, Gallazzi+2005, Zibetti et al. 2017)

- PRIOR distribution of models, characterised by:
 - synthetic observables
 - physical quantities

500,000 models, based on BC03 "evo"+MILES variable SFHs á la Sandage (1986, declining and rising) + stochastic bursts variable Chemical Enrichment Histories ("generalized" leaking box, Erb 2006) dust treatment á la Charlot & Fall (2000): differential attenuation from ISM and birthcloud stochastic distribution Full coverage of age-metallicity plane, equalisation in observables plane

A BAYESIAN SPECTRO-PHOTOMETRIC APPROACH ("BI-STAIN", evolution of Kauffmann+2003, Gallazzi+2005, Zibetti et al. 2017)

- PRIOR distribution of models, characterised by:
 - synthetic observables
 - physical quantities

500,000 models, based on BC03 "evo"+MILES variable SFHs á la Sandage (1986, declining and rising) + stochastic bursts variable Chemical Enrichment Histories ("generalized" leaking box, Erb 2006) dust treatment à la Charlot & Fall (2000): differential attenuation from ISM and birthcloud stochastic distribution Full coverage of age-metallicity plane, equalisation in observables plane

A BAYESIAN SPECTRO-PHOTOMETRIC APPROACH ("BI-STAIN", evolution of Kauffmann+2003, Gallazzi+2005, Zibetti et al. 2017)

- PRIOR distribution of models, characterised by:
 - synthetic observables
 - physical quantities
- LIKELIHOOD for data given each model, from comparison between model observables and data observables

A BAYESIAN SPECTRO-PHOTOMETRIC APPROACH ("BI-STAIN", evolution of Kauffmann+2003, Gallazzi+2005, Zibetti et al. 2017)

- PRIOR distribution of models, characterised by:
 - synthetic observables
 - physical quantities
- LIKELIHOOD for data given each model, from comparison between model observables and data observables
- POSTERIOR probability distribution for the physical parameter(s) of interest, obtained via marginalisation over the entire library

AGE MAPS EXAMPLES

S. Zibetti — GEE5 — Arcetri 2017

Zibetti, Gallazzi et al. (2017)

AGE BIMODALITY SPLIT BY MORPHOLOGY

Zibetti, Gallazzi et al. (2017)

AGE BIMODALITY SPLIT BY MORPHOLOGY

Zibetti, Gallazzi et al. (2017)

AGE BIMODALITY SPLIT BY MORPHOLOGY mainly a bulge vs disc bimodality

Zibetti, Gallazzi et al. (2017)

NOT ONLY BULGE VS DISC...

...BUT ALSO ARM VS INTERARM

S. Zibetti — GEE5 — Arcetri 2017

Zibetti, Gallazzi et al. (2017)

EARLY-TYPE GALAXIES INTERNAL SCALING RELATIONS AND THEIR DRIVERS

- Stellar population gradients:
 - radius
 - surface mass density
 - total (stellar) mass
- What do they tell us about physical mechanisms of galaxy evolution?
- Can they be used to constrain models?
- Observations: 69 CALIFA ETGs, 48 E, 21 S0, excluding obviously interacting/ merging systems

- Scatter in mu* dominated
 by errors! "universal" μ* Z* relation?
- Age: marginally less scatter with radius

Radius vs Surface Mass density: total mass dependence

- Metallicity: almost
 universal µ*-Z*
 relation, residual
 dependence on M*,
 reminiscent of MZ
 relation
- Age: clear dependence of age minimum (hence gradient strength) on mass

Radius vs Surface Mass density: morphology (E-S0) dependence

- Metallicity: no big
 differences, virtually
 identical universal
 µ*-Z* relation
- Age: S0 have lower minimum at ~0.4 HLR, hence stronger positive age gradient

 Not only a mass effect!

Stellar population gradients in ETGs what can we learn from / teach to simulations?

- Hard to reproduce the shapes of the stellar population profiles with "simple" AGN-feedback
 prescriptions even in state-of-the-art SPH simulations (zoom-in of cosmological N-body simulations)
 - Z gradients ~ok qualitatively, quantitatively better without AGN feedback
 - Age gradients are off, already qualitatively

SUMMARY

- Overall "local" age bimodality, reflecting global structure/morphology but also driven by local mass density
 - "universal" old ridge and young sequence (consistent with inside-out)

• ETGs

- ubiquitous negative Z* gradients
- "universal" μ*-Z* relation (tiny 0.05 dex scatter!), with small residual dependence on total M*
- U-shaped age profiles: minimum lower for lower M* and for S0 (at fixed M*) inconsistent with inside-out scenarios; possibly hinting at mechanisms of gas inflow?
- Hard time for models of AGN feedback... difficult to find a fit to everything