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A legacy database of 875 galaxies
• Observed by Herschel
• Large size: D25> 1’ 
• Nearby: v < 3000 km/s

(Davies et al. 2017)



• Measure the UV-mm spectral energy distribution (SEDs) for each galaxy in the
sample.

• Use full SED (HerBIE, CIGALE) and radiative transfer (SKIRT) models, to derive
stellar, gas and dust properties, star formation rates and histories as a fun
ction of morphological type.

• Develop a dust evolution model (THEMIS) consistent with the
SEDs of galaxies of different morphological types and determine the primary
sources and sinks for cosmic dust.

• Compare the evolution of the dust SED and optical/physical properties in the
Local Universe with that inferred from cosmological surveys and the cosmic far
infrared background.

’s goals
Davies et al. (2017)



The                          database
Clark et al. (2017)

• Multi-λ imagery and aperture-matched photometry for 875 galaxies.

• Dedicated Herschel reductions with PACS and SPIRE; standardized archival
observations from GALEX, SDSS, DSS, 2MASS, WISE, and Spitzer.

publicly available at http://dustpedia.astro.noa.gr/



The                          database
Clark et al. (2017)

• Multi-λ imagery and aperture-matched photometry for 875 galaxies.

• Dedicated Herschel reductions with PACS and SPIRE; standardized archival
observations from GALEX, SDSS, DSS, 2MASS, WISE, and Spitzer.

• Ancillary data from IRAS and Planck.

• up to 42 bands/galaxy, 25 bands/galaxy on average (21,857 photometric
measurements).

publicly available at http://dustpedia.astro.noa.gr/



Radial distribution of dust, stars, gas and SFR 
in DustPedia face-on galaxies (Casasola et al. 2017)

Interstellar radiation
field

6 Herschel bands

12 and 22 μm
WISE bands

3.6 and 4.5 μm
IRAC bands

i and g SDSS
NUV and FUV
GALEX

rmax = r25

ü 18 face-on ((d/D)submm>0.4) and large (Dsubmm>9’) galaxies
ü Exponential fits to UV/Optical/NIR/submm surface brightness and

to dust, stellar, gas and SFR surface density



Dust surface density
profile derived by fitting
the SED at each position
within a galaxy and
assuming the THEMIS
dust model (Jones+13,
Jones+17)

Σdust, ΣH2, ΣHI, ΣTot gas

Radial distribution of dust, stars, gas and SFR 
in DustPedia face-on galaxies (Casasola et al. 2017)

ü 18 face-on ((d/D)submm>0.4) and large (Dsubmm>9’) galaxies
ü Exponential fits to UV/Optical/NIR/submm surface brightness and

to dust, stellar, gas and SFR surface density



GALEX
SDSS

IRAC
WISE

Herschel

Average scale-length vs. λ

Radial distribution of dust, stars, gas and SFR 
in DustPedia face-on galaxies (Casasola et al. 2017)

<hdust> = 1.8 <hstar>. Direct confirmation of radiative transfer studies (Xilouris+99,
Bianchi+07, De Geyter+14). Longer grain lifetime at larger radii (e.g., Sauvage+05)?

<hdust> = 2.3 <hH2>. No simple scaling of dust, atomic and molecular gas profiles. Different
dust properties?

2-D Sersic profile fits
to all DustPedia
WISE 3.4𝜇m and
Herschel maps
(Mosenkov+,in prep.)



Radiative Transfer and SFR estimates

M51: heating by young stars dominates 
the FIR SED 

M31: old stars (mainly from the bulge) 
dominates. 

SKIRT (Baes+ 11, Camps+16) radiative transfer models
of face on galaxies (M51, De Looze+14; M31, Viaene+17)

M51

• Stellar templates from observations
• Vertical geometry from edge-on fits
• As much dust as needed, scaled on 

AV from TIR/UV (Cortese+08)

M31

http://www.skirt.ugent.be



Radiative Transfer and SFR estimates

M51: heating by young stars dominates 
the FIR SED 

M31: old stars (mainly from the bulge) 
dominates. 

But a similar dependence on sSFR

Work on M81 (Verstocken+, in prep.) 
and other DustPedia galaxies in 
progress

SKIRT (Baes+ 11, Camps+16) radiative transfer models
of face on galaxies (M51, De Looze+14; M31, Viaene+17)

M51

• Stellar templates from observations
• Vertical geometry from edge-on fits
• As much dust as needed, scaled on 

AV from TIR/UV (Cortese+08)

M31

A&A 599, A64 (2017)

Fig. 12. Density plots of the dust heating fraction from unevolved stellar populations Funev. vs. a number of physical parameters, obtained from
HELGA IV. A red colour indicates a small number of data points in that area of the plot, yellow at a large number. Kendall’s correlation coe�cient
⌧ is given in each panel. First row: dust mass, stellar mass, dust-to-stellar mass ratio. Second row: star formation rate, specific SFR, temperature of
the cold dust in the ISM. The black line is a best fit linear model, the green line is the relation found by De Looze et al. (2014) for M 51. Parameters
are derived according to the MAGPHYS SED model.

– The model is able to reproduce the observed morphologies
fairly well from FUV to submm wavelengths. The median
(absolute value) deviation between model and observations
across all bands is 22%. The flux in the rings is generally
underestimated, and the flux in the inter-ring regions is over-
estimated. Lowering the vertical scale height of the galaxy
somewhat mitigates this e↵ect, but cannot resolve it. The dis-
crepancies are a combination of deprojection e↵ects, varia-
tions in the nature and size distribution of the dust grains,
and the subgrid treatment of the star-forming regions. With
an inclination of 77.5�, M 31 is about the limiting case for
these kind of deprojected radiative transfer models.

– The dust in Andromeda is mainly heated by the evolved stel-
lar populations. From a 3D analysis of the radiation field,
we find that 91% of absorbed stellar radiation originates in
evolved stellar populations. This high value is mainly due to
the bright bulge, which dominates the radiation field out to
the main star-forming ring at 10 kpc. Inside and beyond the
star-forming ring, the contribution of unevolved stellar pop-
ulations (i.e. ionising and non-ionising young stellar popula-
tions) to the radiation field increases, but usually remains in
the 10�30% range.

– The sSFR (and its observational counterpart, NUV � r
colour) is a promising tracer for the total dust heating
fraction and thus for the relative contributions to the total IR
emission. We find that regions in M 31 match the best fit rela-
tion derived from M 51 pixels. In fact, the two datasets make
a rather smooth and continuous sequence. More research is
required to assess whether sSFR (and NUV � r) is a general
tracer of dust heating fractions in galaxies at a local scale.

Our study has shown that the heating of dust by stellar popula-
tions is a complex problem with a large influence of geometry
in three dimensions. E↵ects like non-local heating make it dif-
ficult to draw conclusions from 2D “on-sky” analysis. The con-
tribution of evolved stellar populations is dominant in M 31, and
can also be significant in other galaxies. One should therefore
be careful to directly link dust emission to the properties of un-
evolved stellar populations.

As a final remark, we want to underline that this is one of the
first attempts to construct a detailed geometrical model of stars
and dust of a resolved and moderately inclined galaxy, based
purely on 3D radiative transfer simulations. Because 3D radia-
tive transfer models are computationally demanding, we were
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http://www.skirt.ugent.be



Inclusion of THEMIS dust emission templates into 
the CIGALE SED fitting tool (Nersesian+, in prep.)

Global SED modelling and dust properties

CIGALE
Code Investigating GALaxy Emission
https://cigale.lam.fr/

https://www.ias.u-psud.fr/themis

THEMIS, an interstellar dust model based on optical
properties measurements in the lab, including
hydrogenated amorphous carbon (Jones+13, 17)



Inclusion of THEMIS dust emission templates into 
the CIGALE SED fitting tool (Nersesian+, in prep.)

Global SED modelling and dust properties

CIGALE
Code Investigating GALaxy Emission
https://cigale.lam.fr/

https://www.ias.u-psud.fr/themis

THEMIS, an interstellar dust model based on optical
properties measurements in the lab, including
hydrogenated amorphous carbon (Jones+13, 17)

Dust Masses using THEMIS a factor 3 
smaller than for Draine model (2003)

A study of Dust, Star and Gas
scaling laws is forthcoming
(Nersesian+, Casasola+, in prep.)



The fraction of luminosity absorbed by dust
On average, 30% of the bolometric luminosity is absorbed and re-emitted by dust 

grains (Soifer+91; Xu+95; Popescu+02, Skibba+11, Davies+12, Viaene+16)



fabs=Ldust/Lbolo

The fraction of luminosity absorbed by dust
On average, 30% of the bolometric luminosity is absorbed and re-emitted by dust 

grains (Soifer+91; Xu+95; Popescu+02, Skibba+11, Davies+12, Viaene+16)



The fraction of luminosity absorbed by dust
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Disk-dominated

Bulge-dominated
2-D Sersic profile fits at 3.4 𝜇m

(Mosenkov+, in prep.)

Bianchi+, in prep. 

ETGs

Sa-Sb, spiral
with big bulges

S0-Sa,
rings?

Dwarfs Sd-Im,
high sSFR, 

high gas fraction
(Remy-Ruyer+15,

de Vis+17)

Cosmic Background
fabs=50%

(Franceschini &
Rodighiero+17)

Dependence on stellar & dust
mass build-up, and on the

geometry evolution

fabs=25%, but large scatter
and dependence on Lbolo



Dust Evolution and Environment
Dust is removed from galaxies in clusters by ram-
pressure stripping and tidal interaction. Any effect 
on global galactic properties? Davies+, in prep.

Cortese+10a

NGC4438 (Cortese+10b)

M86 (Gomez+10)
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the stellar component, external
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The evolution of dust grains in
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Dust extends up to 2 R25 
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QSO reddening (Menard+10)
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The                               archive
http://dustpedia.astro.noa.gr

Images and SEDs available

Model results available soon,
plus ancillaries (gas masses, 
metallicities, etc.), by the end 
of DustPedia (April 18)

Stay Tuned!
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Thank you!


