

Investigating galaxy evolution with a multi-wavelength approach An UV view of galaxies in nearby groups

R. Rampazzo¹, P. Mazzei¹, A. Marino¹, H. Plana, M. Uslenghi², G. Trinchieri³ and A. Wolter³

¹ INAF-Osservatorio Astronomico di Padova, Padova (Italia)
 ² INAF- Iasf, Milano (Italia)
 ³ INAF-Osservatorio Astronomico di Brera, Milano (Italia)

GEE-5 Galaxy evolution and environment: observations meet simulations and theory Arcetri November 15, 2017

The GALEX view of galaxy SF/AGN activity in the Local Universe (50000, optically selected galaxies up to z~0.1) Salim+ 2007, ApJS, 173, 267 BC

Examples of BC, GV and RS scheme in nearby groups

observation highligth the different richness of BC vs. GV or RS:

- 1) is this marking a different group evolutionary phase ?
- 2) at what extent are ETGs in the RS "red & dead" ?

Marino+ 2016, MNRAS, 459, 2212

An UV view of galaxies in nearby groups

1. Observations: the UV vs. optical morphological structures of ETGs

2. Simulations: understanding the eventful life of ETGs in LDE via SPH-CPI

2.a following a mixed merger: NGC 454 an E+S pair gas rich + gas poor

2.b NGC 3447/3447A: an odd pair

 Table 1. Global properties of sampled ETGs

Galaxy	D ₂₅	D	scale	m-M	M _B	M_{HI}	$L_X(gas)$	•
Ident.	[arcmin]	[Mpc]	[kpc arcmin ⁻¹]	[mag]	[mag]	$[10^9 \mathrm{M}_\odot]$	$[10^{40} \mathrm{erg} \mathrm{s}^{-1}]$	_
NGC 1366	2.1	21.1±2.1	6.1	31.62 ± 0.50	-18.88±0.54	<1.0	< 0.03	no gas
NGC 1415	3.7	22.7 ± 2.5	6.5	31.78 ± 0.55	-19.23±0.59	1.2^{a}	0.1	ne gae
NGC 1426	2.9	24.1 ± 2.4	7.0	31.91±0.50	-19.70±0.52		< 0.03	
NGC 1533	3.2	21.4±2.1	6.2	31.65 ± 0.50	-19.86±0.52	7.4^{b}	< 0.11	and rich
NGC 1543	3.6	20.0 ± 2.0	5.8	31.50 ± 0.50	-20.11±0.53	0.8	< 0.16	yas non
NGC 2685	4.4	16.0 ± 1.6	4.8	31.02 ± 0.50	-19.09±0.51	3.0^{c}	< 0.04	
NGC 2974	3.5	21.5 ± 2.0	6.2	31.66 ± 0.46	-20.01 ± 0.48	0.7^{d}	0.2	
NGC 3818	2.4	36.3 ± 3.6	10.4	32.80 ± 0.50	-20.22±0.58		0.55	
NGC 3962	4.2	35.3 ± 3.5	10.2	32.74 ± 0.50	-21.29±0.53	2.8^{e}	0.33	
NGC 7192	2.4	37.8 ± 3.8	10.7	32.89 ± 0.50	-20.81±0.51	0.7^{e}	1.0	
IC 2006	2.3	20.2 ± 2.0	5.9	31.53 ± 0.50	-19.34 ± 0.51	0.3	0.08	

Mazzei+ 2017, in prep.

The apparent diameters (col. 2) and the adopted distances (col. 3) are derived from the Extragalactic Distance Database (EDD: http://edd.ifa.hawaii.edu), as in Papers 1 and II. Absolute total magnitudes in col. 6 are derived from col. 5 using B-band observed total magnitudes and extinction corrections from Hyperleda (Makarov et al. 2014) catalogue. The HI masses (col. 7) are obtained using the distance in col. 3 and fluxes from NED and from the following references: ^{*a*} Courtois et al. (2015); ^{*b*} Ryan-Weber, Webster & Starvely-Smith (2003); ^{*c*} Józsa et al. (2009); ^{*d*} Kim et al. (1988); ^{*e*} Serra & Oosterloo (2010). X-ray gas luminosity (col. 8) is from Table 7 of Trinchieri et al. (2015).

© 2. UV (Swift) vs. optical structures

Rampazzo+ 2017, A&A, 602, A97

NGC 1426

NGC 2974

IC 2006

NGC 1543

UV vs. optical structure.

UV vs. optical synoptic view of the Swift data set J

2.5

2.5

2.5

2.5

2.5

3.0

3.0

3.0

3.0

3.5

3.5

3.5

3.0

3.5

Rampazzo+ 2017, A&A, 602, A97

M2-V color more crude than n to guess an underlying disk since it reddens in <~10⁸ year

Summarizing from UV observations

SPH simulations with Chemo Photometric Implementation

- 1. Triaxial (T = 0.84) halos initially of DM+gas with the same average density, spin and virial ratio (0.1)
- 2. SF on feedback from type II SNae and stellar winds (mass loss in evolved stars)
- 3. IMF- Salpeter from $0.01 M_{\odot}$ to $100 M_{\odot}$
- 4. CPI based on Padova EPS models including six stellar populations: Z=0.0004, 0.001, 0.004, 0.008, 0.02, 0.05
- 5. Providing the SED from 0.05 micron to 1mm at each snapshot, i.e. accounting for dust effects (extinction and re-emission) in a self-consistent way

Mazzei & Curir 2003, ApJ, 591, 784 Mazzei+ 2014a AdSpR, 93, 950 Mazzei+ 2014b, ApJ, 782, 53 Mazzei+ 2017, in preparation

4. Following a mixed merger in LDE: the case of NGC 454

Plana+ 2017, A&A, submitted

a) SPH+CPI simulations suggest 1:1 merger with strong dust obscuration in UV -> FIR emission is
2.5 times that in NUV-near range.
b) galaxies will merge in less than 0.2 Gyr.
c) system age 12.4 Gyr

Mazzei+ 2017b, A&A, in press

Mazzei+ 2017b, A&A, in press

Observations PA=14 and PA=65

Projected luminosity - density map: a disk instability rather than a companion

time step

 $37 imes10^{6}$

best fit snapshot

✓	Mazzei+ 2014, ApJ, 782, 53 Bright ETGs spend less time (up to 3~5 Gyr) in the GV than fainter ones in LDE the predominance of barionic/dark matter within D ₂₅ in ETGs starts at z~1
✓	up to 30% of the stellar mass is assembled in the GV of LDE SF quenching is intrinsic and, in LDE, independent from the environment richness Mazzei+ 2017, in prep.
✓	Odd pairs in loose groups: E+S pairs (~10 -25% in pair catalogues) can be understood in term of mergers—> 1:1 on-going merger in the case of NGC 454 Plana+ 2017, MNRAS,
✓	Odd pairs and disk instabilities: NGC 3447/NGC 34447A is a false pair! how many in galaxy surveys?
	Mazzei+ 2017b, A&A, in press
✓	Thanks a lot for the patience !