AN INTERACTING GALAXY PAIR AT THE ORIGIN OF A LIGHT ECHO

Paola Merluzzi

INAF - Osservatorio di Capodimonte

G. Busarello (INAF-OACN) M. A. Dopita, A. D. Thomas (ANU, AU) C. P. Haines (INAF-OABM) A. Grado, L. Limatola, A. Mercurio (INAF-OACN)

Hanny's voorwerp (z=0.05)

Lintott+ 2009

discrepancy between the level of the cloud ionization and the AGN luminosity

Rampadarath+ 2010, Keel+2012a, Sartori+2016

HV is a light echo ionized by an AGN faded within the last 10⁵yr

HV-like trought the Galaxy Zoo

Keel+ 2012b

From SDSS DR7 a sample of potential AGN at z < 0.1 [OIII]/Hβ and [NII]/Hα Veron-Cetty & Veron (2010)

I8116 objects
Galaxy Zoo

t

19 galaxies with AGN-ionized region
 at a projected radii r > 10 kpc
 [OIII] vs. LFIR

↓

8 strong deficit in ionizing luminosity and no evidence of obscured AGN

IC 2497	IC 2637	Mkn 78	Mkn 266		
Mkn 273	Mkn 463	Mkn 739	Mkn 883		
Mkn 1498	NGC 4388	NGC 5252	NGC 5972		
SDSS 0955+39	SDSS 1005+28	SDSS 1510+067	SDSS 1524+08		
SDSS 2201+11	Teacup 1430+13	UGC 7342	UGC 11185		

EELR are largely phoionized tidal debris

Green Bean sample

Schirmer+ 2013

From SDSS DR8 a sample of 29 Seyfert-2 at z = 0.2 - 0.6

[OIII] vs. $L_{24\mu m} \rightarrow AGN$ luminosity is insufficient to power the EELR [OIII] flux

Shapley Supercluster Survey

stellar mass surface density map

Merluzzi+ 2015

ShaSS-073_622

ShaSS-073

Seyfert-2 Veron-Cetty & Veron 2001 Bar and external ring: (R)SB0a M*= 5.7x10¹⁰M_☉

ShaSS-622

probably was Sb/Sbc

 $\Delta V = 130 \text{ km s}^{-1}$ M*₀₇₃/M*₆₂₂ = 10

ShaSS-073_622

ShaSS-073

Seyfert-2 Veron-Cetty & Veron 2001 Bar and external ring: (R)SB0a M*= 5.7x10¹⁰M_☉

ShaSS-622

probably was Sb/Sbc

Property	ShaSS 423045073	ShaSS 423045622		
Coordinates ^{1,2}	131632.58-311218.5	13 16 32.02 - 31 12 11.5		
(J2000) Magnitudes ^{3,4,5}				
u ^(a)	$17.70 {\pm} 0.04$	$17.68 {\pm} 0.04$		
$g^{(a)}$	16.20 ± 0.02	16.64 ± 0.02		
$r^{(a)}$	$15.47 {\pm} 0.02$	$16.87 {\pm} 0.02$		
$i^{(a)}$	$15.11 {\pm} 0.02$	17.03 ± 0.02		
$K^{(a)}$	12.22 ± 0.03	$14.95 {\pm} 0.03$		
W1 ^(b)	$11.69 \pm 0.02^{(c)}$			
W2 ^(b)	$10.59 \pm 0.02^{(c)}$			
W3 ^(b)	$7.19 \pm 0.02^{(c)}$			
W4 ^(b)	$4.79 \pm 0.03^{(c)}$			
$F_{60\mu m}$	$0.40{\pm}0.05\rm{Jy^{(c)}}$			
F1.4GHz	$3.9{\pm}0.6\mathrm{mJy^{(c)}}$			
L _{I.4GHz}	2.2x10 ²² WHz ⁻¹			

SED of ShaSS-073

emission from a torus of hot dust is required to produce the observed SED over $2-30\mu m$

AGN contribution at 5µm: 3.09x10⁴³erg s⁻¹

AGN bolometric luminosity: 2.47x10⁴⁴erg s⁻¹ Lacy+2015

Kinematics of the gas

Structure of the [OIII] λ 5007 emission line around the AGN of ShaSS-073 (6x9 arcsec²)

gray: observed spectrum cyan: continuum black: one-component fit red+blue: two-component fit

main component: continuum distribution in width and redshift with the rest of the galaxy second component: blue shifted and generally much wider

center (AGN)

Kinematics of the gas

The radial velocity field of the main gas component is fairly consistent with rotation in the disks of both galaxies

The second gas component blue-shifted with respect to the disk of ShaSS-073 and with a higher velocity dispersion: circum-nuclear (r<2-3 kpc) region $\sigma > 360$ km s⁻¹ radial velocity down to -440 km s⁻¹ northern area with more moderate values evidence that the interaction between the two galaxies is at its starting phase

Metallicity helps!

Revealing the ionization cone

a proxy for the ionization parameter for regions excited by an AGN

intersection of the ionization cone from the AGN with the gas disk of ShaSS-622

- region of very strong [OIII] emission in ShaSS-622
- border of highly ionized area resembling a conic section

Physical properties of the gas

SNR=150 for the $H\alpha$ line

Weighted Voronoi Tessellation

73 regions

ShaSS-622: [OIII]/Hβ decreasing ratios

ShaSS-073: 3 disk regions, **centre** and 2 regions with the second component ($\sigma > 360$ km s⁻¹)

Area with 2 spectral components

Physical properties of the gas

regions separate into distinct groups:

- regions of gas photoionized by star formation
- regions within the ionization cone in ShaSS-622 (log([OIII]/H β)~I)
- regions of ShaSS-073
 - (\Box main component, Δ second component)

Gas in ShaSS-073 is generally characterized by a lower excitation than the ionization cone...

with the notable exception of the gas in the outflow.

Sunday, 19 November 17

Photoionization modelling

Theoretical AGN grid of models **Davies+ 2016**

ionization cone in ShaSS-622 AGN and outflow in ShaSS-073

Confirming the different abundances in the two galaxies ShaSS-073 1.5 solar ShaSS-622 0.4 solar

Photoionization modelling

λ (Å)	Line ID	Ionization	cone	I	I II regions	5	nization modelling
		Observed	Model	H 11 #1	Нп #2	Model	
3346	[Ne v]	13.19 ± 0.30	8.39				
3426	[Ne v]	35.50 ± 0.41	23.50				High Excition Region
729	[O II]			252.7 ± 6.5	201.5 ± 3.2	355.0	(flux offset +120 units) -
3738	[O II]	240.8 ± 1.6	160.84				
3869	[Ne 111]	73.07 ± 1.13	84.67	21.8 ± 3.3	26.0 ± 1.4	52.9	
3889	$H\zeta$			13.1 ± 1.8	12.8 ± 1.7	10.5	1
3967	[Ne 111]	24.42 ± 0.63	25.51				
3970	$H\epsilon$	14.82 ± 1.96	15.40				
3889	$H\zeta$			13.1 ± 1.8	12.8 ± 1.7	10.5	
4068	[S II]	3.1 ± 0.53	1.80				
4076	[S 11]	1.0 ± 0.50	0.58				
4102	Ηδ	24.48 ± 1.60	25.20	29.8 ± 1.5	23.8 ± 1.2	25.8	
4340	$H\gamma$	45.96 ± 0.11	46.74	48.7 ± 1.9	42.2 ± 1.6	47.0	[5 11]
4363	[011]	21.31 ± 0.17	20.65	8.7 ± 3.4	0.4 ± 0.4	4.2	
4471	Hel	2.80 ± 0.17	2.81	-010/09/02/00 -			
4686	HeII	26.4 ± 0.39	33.58				He I He I [Fe VII] I [Ar III] [O II] -
4711	[Ar IV]	4.12 ± 0.13	5.73				man a second
4740	[Ar IV]	3.45 ± 0.20	4.34				
4861	Hβ	100 ± 0.80	100	100.0 ± 2.4	100.0 ± 2.6	100.0	Nucleus of Main Galaxy
4959	[011]	292.3 ± 0.55	331.0	116.4 ± 2.4	109.2 ± 2.6	120.2	Marken and Ma
5007	[011]	876.3 ± 0.70	956.7	349.1 ± 4.5	327.5 ± 5.4	347.4	
5200	[N 1]	1.25 ± 0.60	2.85				6000 7000
5876	Hel	7.49 ± 0.10	7.30	8.4 ± 1.3	14.2 ± 2.1	11.5	(clongth (Å)
6087	[Fe VII]	1.45 ± 0.26	0.44				/elength (A)
6300	[0]	14.43 ± 1.07	12.19	10.0 ± 2.0	7.1 ± 3.9	5.6	
6312	[S III]	2.89 ± 0.69	8.42				Best fit model for the gas in the ionization co
6364	[01]	4.56 ± 0.36	3.90	6.4 ± 1.6	3.3 ± 0.9	1.8	best int model for the gas in the formzation to
6548	[N II]	7.26 ± 0.65	5.11	4.1 ± 2.3	7.4 ± 3.5	7.1	• gas pressure of $\log(P/k) = 6.2 \text{ cm}^{-3} \text{ K}$
6563	Hα	285.8 ± 0.30	293.8	286.0 ± 4.5	286.0 ± 5.5	285.5	
6583	[N II]	21.27 ± 0.96	15.09	12.2 ± 3.0	22.1 ± 3.0	20.2	• Ionization parameter log $U = -2.2$
6678	HI	2.13 ± 0.50	2.06	4.9 ± 2.0	7.0 ± 3.5	3.2	 recombination time-scale of 2500 vr for H and
6716	[S 11]	39.65 ± 0.43	26.58	33.9 ± 3.5	48.9 ± 4.5	23.3	recombination time-scale of 2500 yr for frand
6731	[S 11]	27.81 ± 0.35	18.84	22.9 ± 2.6	35.2 ± 3.5	19.7	23 yr for [OIII]
7136	[Ar 111]	8.80 ± 0.61	10.06				
7319	[O II]	3.54 ± 0.99	2,50				
7329	[O II]	2.34 ± 1.05	2.02				
7751	[Arm]	1.89 ± 0.15	2.41				

Structure of the ShaSS-073_622 system

unperturbed gas velocity field \rightarrow the gas still lies in the galactic plane \rightarrow **flat projection screen** Properties of the disks + shape of the illuminated area in ShaSS-622 \rightarrow direction of the AGN

Structure of the ShaSS-073_622 system

	$k_{7} = -1$		$k_{7} = +1$
distance between the centers of the galaxies		21 kpc [19-24]	
distance along the line of sight		19 kpc [17-22]	
angle between their disks	27° [22-32]		69° [63-75]
semi-aperture of ionization cone		12° [12-15]	
angle between ShaSS 073 axis and cone axis	71° [66-78]		28° [21-34]
angle between cone axis and line of sight		22° [20-25]	
angle between the cone axis and the disk of $\mathrm{ShaSS}622$		6° [2-10]	

Structure of the ShaSS-073_622 system

	$k_{7} = -1$		$k_{7} = +1$
distance between the centers of the galaxies		21 kpc [19-24]	
distance along the line of sight		19 kpc [17-22]	
angle between their disks	27° [22-32]		69° [63-75]
semi-aperture of ionization cone		12° [12-15]	
angle between ShaSS 073 axis and cone axis	71° [66-78]		28° [21-34]
angle between cone axis and line of sight		22° [20-25]	
angle between the cone axis and the disk of $\mathrm{ShaSS}622$		6° [2-10]	

Conclusions

AGN luminosity required to ionize the gas in the ShaSS-622 disk vs. bolometric luminosity given by the SED fit

the AGN radiation required to excite the gas inside the ionization cone in ShaSS-622 is ~20 times the current luminosity of the AGN

the light travel time from the AGN to the disk of ShaSS-622 is $\sim 3 \times 10^4$ yr +

the gas recombination time is very short compared to the light travel time

↓

AGN luminosity has dropped by a factor 20 within the last ~3 x l 0⁴ yr

First light echo between galaxies

→ EELRs around local AGNs are tidal debris

→ is ShaSS_073-622 the progenitor of a GB and HV-like object?

Merluzzi+ 2017 ApJ, in press