ISM gas physical properties in local AGN with the MAGNUM survey

Matilde Mingozzi University of Bologna - Arcetri Observatory

G. Cresci, G. Venturi, A. Marconi (P.I.), G. Risaliti, F. Mannucci, S. Carniani, E. Nardini, and the MAGNUM team

Negative and positive feedback at z \sim 1.5 - 2.5

QSO outflow feedback finally revealed at high-z...

Narrow $H\alpha f lux + blueshifted$ [OIII] velocity

Carniani+16

... BUT at high-z very difficult to measure outflow physical quantities and provide interpretation even at high spatial resolution

M. Mingozzi

Negative and positive feedback at z \sim 1.5 - 2.5

QSO outflow feedback finally revealed at high-z...

Narrow $H\alpha f lux + blueshifted$ [OIII] velocity

A IFU view of the nearest AGN would provide much larger intrinsic spatial resolution to study SF and AGN activity, ionization conditions, inflows, outflows etc.

... BUT at high-z very difficult to measure outflow physical quantities and provide interpretation even at high spatial resolution

M. Mingozzi

MAGNUM survey: Measuring AGN Under MUSE Microscope

- Nearby AGN (D < 50 Mpc z < 0.002)
- MUSE (VLT) (1'×1', 0.2" sampling, 4750-9300 Å)
- So far ten object observed (90,000 spectra!)
- Seeing limited (~ 1" \rightarrow 15 pc at 4 Mpc –115 pc at 30 Mpc)
- o Multiwavelength data: Chandra XMM-Newton, Galex, HST, Spitzer, Herschel, ALMA

GEE5 – November 2017

MAGNUM survey: Measuring AGN Under MUSE Microscope

- \circ Nearby AGN (D < 50 Mpc z < 0.002)
- MUSE (VLT) (1'×1', 0.2" sampling, 4750-9300 Å)
- So far ten object observed (90,000 spectra!)

<u>AIM</u>

Study in details SF and AGN activities, ISM conditions and outflows, with kinematical and photoionization models

- Seeing limited (~ 1" \rightarrow 15 pc at 4 Mpc –115 pc at 30 Mpc)
- o Multiwavelength data: Chandra XMM-Newton, Galex, HST, Spitzer, Herschel, ALMA

GEE5 – November 2017

Circinus Galaxy

GEE5 – November 2017

∆RA[arcsecs]

 $\Delta RA [arcsecs]$

∆RA [arcsecs]

M. Mingozzi

Disk

Outflow

0 corresponds to stellar velocity in that pixel

GEE5 – November 2017

0 corresponds to stellar velocity in that pixel

Disk

Disk

Outflow

6[arcsec]

GEE5 – November 2017

0 corresponds to stellar velocity in that pixel

Disk

Outflow

0 corresponds to stellar velocity in that pixel

GEE5 – November 2017

Disk

RA[arcsec]

Outflow

RA[arcsec]

GEE5 – November 2017

∆RA [arcsecs]

M. Mingozzi

6[arcsec]

Disk

Outflow

RA[arcsec]

[SIII]λλ9531/[SII] λλ6724 2.50 2.25 • 20-2.00 10 Δδ [arcsecs] 1.75 1.50 1.25 1.75 0 -10-1.00 -20 0.75 -30∔ -30 0.50 -20 -i0 Ó 10 20

RA[arcsec]

GEE5 – November 2017

∆RA [arcsecs]

M. Mingozzi

6[arcsec]

Disk

RA[arcsec]

Outflow

RA[arcsec]

[SIII]λλ9531/[SII] λλ6724 2.50 2.25 • 20-2.00 10 Δδ [arcsecs] 1.75 1.50 1.25 1.75 0 -10-1.00 -20 0.75 -30∔ -30 0.50 -20 -i0 Ó 10 20

GEE5 – November 2017

∆RA [arcsecs]

M. Mingozzi

6[arcsec]

Matter and ionization bounded clouds

Matter bounded clouds (MB)

geometrically smaller than the depth needed to absorb all ionizing photons

e.g. Thin (hot) halo surrounding a dense cloud core, the ionization bounded cloud (IB)

- Ionizing spectrum impinges to the MB clouds : high-ionization lines
- Radiation field incident to **IB** is filtered : low-ionization lines

Sequence parameterized by A_{M/I} the solid angle ratio of the MB clouds to the IB clouds

higher $A_{M/I}$ means higher contribution of MB clouds

M. Mingozzi

Matter and ionization bounded clouds

Matter bounded clouds (MB)

geometrically smaller than the depth needed to absorb all ionizing photons

e.g. Thin (hot) halo surrounding a dense cloud core, the ionization bounded cloud (IB)

- Ionizing spectrum impinges to the MB clouds : high-ionization lines
- Radiation field incident to **IB** is filtered : low-ionization lines

Sequence parameterized by A_{M/I} the solid angle ratio of the MB clouds to the IB clouds

higher $A_{M/I}$ means higher contribution of MB clouds

M. Mingozzi

MB component : responsible for most of the [OIII] and [SIII] emission, coming from the outflowing material inside the cone

IB component : responsible for higher and higher [NII]/H α (and also [SII]/H α and [OI]/H α)

M. Mingozzi

MB component : responsible for most of the [OIII] and [SIII] emission, coming from the outflowing material inside the cone

IB component : responsible for higher and higher [NII]/H α (and also [SII]/H α and [OI]/H α)

M. Mingozzi

MB component : responsible for most of the [OIII] and [SIII] emission, coming from the outflowing material inside the cone

Shock models (Mappings III - Allen 2008) – n = 100 cm⁻³ responsible for the highest [NII]/H α

log [OIII]/H β

M. Mingozzi

MAGNUM galaxies: velocity resolved [NII] BPT diagram

GEE5 – November 2017

Nuclear outflow in NGC5643

[NII] – Hα – [OIII] M. Mingozzi

[NII] BPT spatial distribution

0 -20 -10 0 10 20

[OI] BPT spatial distribution

Nuclear outflow in NGC5643

Nuclear outflow in NGC5643

Cresci+ 15b

GEE5 – November 2017

Nuclear outflow in Centaurus A

M. Mingozzi

M. Mingozzi

M. Mingozzi

M. Mingozzi

M. Mingozzi

M. Mingozzi

Similar to SF inside the outflow in IRAS F2318-5919

• Outflow is traced by nebular components, located in the SF locus of the BPT diagrams

Summary

MUSE data of nearby AGN provide huge amount of information on the physics of the nuclear regions of galaxies:

- Infer different ionization conditions in the central region of galaxies (resolved BPT)
- Understand the ionizing structure of the outflow (velocity resolved BPT)
- Investigate the relation between AGN and SF (positive feedback in NGC5643 and CenA?)
- Detailed kinematic study of outflow structure in the ionization cone see G. Venturi talk

Work in progress

- Cloudy photoionization models to reproduce the observed velocity resolved BPT
- Investigate in details what's really happening in CenA (X-shooter proposal)

M. Mingozzi