Molecular gas accreting onto massive high-z galaxies

Michele Ginolfi

PhD student

advisor: Raffaella Schneider; co-advisor: Roberto Maiolino

What does it fuel star formation in galaxies?

SF occurs on longer timescale!
...star formation sequence is evident at all times..

SFR $\sim 10^{2}-10^{3} \mathrm{M}_{\odot \mathrm{yr}^{-1}}$ $\tau_{\text {depl }}=\frac{\mathrm{M}_{\text {gas }}}{\mathrm{SFR}} \sim 300 \mathrm{Myr}-1 \mathrm{Gyr}$
mini bibliography
Leroy+08 Sancisi+08 Cresci+09
: Genzel+10 Tacconi+13
Saintonge+13
Schinnerer+16
Additional gas reservoir is needed to support (fuel) star formation!

Galaxies contain $<10 \%$ of baryons, an huge reservoir is available in the IGM.

Accretion of gas from the IGM can supply galaxies at all epochs (especially at high-z)!

What we know from simulations...

mini bibliography

- In the early Universe massive galaxies grow via accretion of gas through cosmic streams.
- Gas accretion fuel the intense star formation observed in such primeval systems.

Dekel et al. 2009 Genel, Dekel \& Cacciato 2012 Silk \& Mamon 2012 Sanchez Almeida et al. 2014 Keres et al. 2014 Schaye et al. 2015 Nelson et al. 2015 Ceverino et al. 2016
Sanchez Almeida et al. 2017

Via Absorption

Via Emission

Cantalupo+14; Borisova+16; Fumagalli+16;
Patricio+16; Wisotzki+16; Vanzella+16;
Arrigoni-Battaia+16; Vernet+17

What does it happen in massive galaxies within overdense regions?

IGM/CGM enrichment is particularly enhanced in overdense regions (e.g. protoclusters) due to the large presence of massive outflows (starburst and/or AGN driven)

Krishnan et al. 2017	"Enhancement of AGN Activity in Distant Galaxy Clusters"
Socolovsky et al. 2017	"Excess of Post-Starburst Galaxies in Distant Galaxy Clusters"
Hatch et al. 2017	Very good review

Under these peculiar conditions, gas flows and circumgalactic gas reservoir may be investigated exploiting other tracers, e.g., molecular gas, metals, dust...

Let's try with ALMA

ALMA (CO J=4-3) of the most massive galaxy in the redshift range $3<z<4$ within the 150 arcmin 2 covered by the GOODS-S field.
$\mathrm{z}=3.473$
$\mathrm{M}_{\text {star }} \sim 1.9 \times 10^{10} \mathrm{M}_{\odot}$
$\mathrm{Z} \sim 1 / 2 \mathrm{Z}$ ©
SFR ~ $200-250 \mathrm{M}_{\odot} / \mathrm{yr}$

Ginolfi+17; Troncoso+14; Santini+15
configuration tailored at detecting molecular gas down to deep sensitivity on large scales !

Franck \& McGauch 2016: based on a $\delta($ gal) criteria Forrest et al. 2017: extreme [OIII] + H β emitters density Lemaux et al. (in prep): extreme overdensity of star formation and stellar mass in the density maps from the VUDS spectroscopic survey
Len Cowie (private communication): huge excess in the 850μ flux (SCUBA-2)

Extended CO emission

Ginolfi et al., 2017, MNRAS, 468, 3468

The CO emission is extended over about 40 kpc in an elongated structure.

Total gas mass of the system:

$$
\mathrm{M}_{\mathrm{gas}} \sim 1-6 \times 10^{11} \mathrm{M}_{\odot}
$$

Only the 30% of the mass is associated with the central galaxy!

something similar...

Emonts et al. 2016, Science
Spiderweb galaxy, z=2.15

Tan et al., 2014, A\&A, 569, 17 GN20, z=4

kinematics

Ginolfi et al., 2017, MNRAS, 468, 3468

The kinematics 'suggests' that the gas in CGM is tracing radial streams moving towards the central massive galaxy.

on larger scales...

Ginolfi et al., 2017, MNRAS, 468, 3468

CO emitters gas masses on 250 kpc scales (>5 σ), with masses of $\mathrm{M}_{\mathrm{gas}} \sim 10^{10} \mathrm{M}_{\odot}$
these systems may be the densest regions of the large scale accreting filaments in which gas has cooled and fragmented, in line with models expectations...

let's have a look to simulations...

Simulation tailored at reproducing the same properties of our target

Dekel, Lapiner: private communication

We reported ALMA observations tracing the molecular gas around (on CGM scales) the most massive galaxy at z~3-4 in the GOODS-S field, revealing streams of molecular gas on scales from 40 to 200 kpc accreting onto the central galaxy. (see Ginolfi+17, MNRAS)
direct observational evidence of gas flows sustaining star formation? we need confirmation and more statistics...
We're planning deep follow-up observations (ALMA, MUSE, SINFONI) to probe the multi-phase CGM around galaxies.

Our idea:

This may be a common behaviour among massive galaxies in overdense regions (e.g. protoclusters). These are peculiar systems where it may be possible to understand gas flows and accretion by looking at the molecular gas phase.

The galaxy baryon cycle

What does it fuel galaxies?
What does it happen in galaxies? (e.g., metals and dust evolution)
What is the imprinting of feedback on CGM?

GAMESH - our model of galaxy evolution

Stellar dust is not able to account for the available observations of local galaxies spanning a wide range of stellar masses and metallicities, independently from the adopted stellar dust yields. Additional (non-stellar) mechanisms of dust growth at play?

Lya Nebulae around quasars and powerful outflows

Deep MUSE observations of a BAL OSO at z~5

- Lya Nebula extended over ~60 kpc;

bibliography
Cantalupo+14; Borisova+16; Fumagalli +16; Wisotzki+16; Vanzella+16; ArrigoniBattaia+16; Vernet+17; Farina+17
- An analysis of Lya Nebula sizes along the redshift reveals an interesting relation between sizes of Lya Halos and DM halos around OSO.
- The velocity dispersion map shows a FWHM>1000km/s in the inner regions of the CGM. Outflowing material escaping from the OSO?

Thank you for your attention

questions?

comments?
suggestions?

