

A&A resubmitted

CIG grant (eEASy) 2013-2016

Feedback in action in a prototypical outflowing QSO at z~1.5

Marcella Brusa

DIFA-Dipartimento di Fisica e Astronomia / Università di Bologna & INAF / Osservatorio Astronomico di Bologna

Molecular outflow and feedback in the obscured Quasar XID2028 revealed by ALMA

M. Brusa^{1,2}, G. Cresci³, E. Daddi⁴, R. Paladino⁵, M. Perna³, A. Bongiorno⁶, E. Lusso⁷, M. T. Sargent⁸, V. Casasola³, C. Feruglio⁹, F. Fraternali¹, I. Georgiev¹⁰, V. Mainieri¹¹, S. Carniani^{12,13}, A. Comastri², F. Duras⁶, F. Fiore⁶, F. Mannucci³, A. Marconi¹⁴, E. Piconcelli⁶, G. Zamorani², R. Gilli², F. La Franca¹⁵, G. Lanzuisi^{1,2}, D. Lutz¹⁶, P. Santini⁶, N. Z. Scoville¹⁷, C. Vignali^{1,2}, F. Vito^{18,19}, S. Rabien¹⁶, L. Busoni³, and M. Bonaglia³

GEE 5 - Arcetri - November 15-17 2017

Feeding & Feedback in galaxies & AGN

Harrison 2017 review

Toft+2014

Outflows (in luminous systems)

Gabor&Bournaud2014

"AGN" is a phase

Models predictions for the feedback phase

(c) Interaction/"Merger"

(b) "Small Group"

Hopkins+2008

 halo accretes similar-mass companion(s)
 can occur over a wide mass range
 Music still similar to before: dynamical friction merges the subhalos efficiently

halo & disk grow, most stars formed
 secular growth builds bars & pseudo
 "Seyfert" fueling (AGN with M₆>-23)
 cannot redden to the red sequence

(d) Coalescence/(U)LIRG

Compton Thick BH Growth INFRARED (e) "Blowout"

~Coeval SB-AGN X-RAY (f) Quasar

unobscured QSO OPTICAL

Major mergers model predictions:

- 1) BH growth and SF almost "simultaneous"
- 2) blow-out phase very short (< 100 Myr)
- 3) blow-out phase IR bright (dusty)
- 4) blow-out phase X-ray obscured
- 5) blow-out phase radiates at the 0.1-1 L/ LEdd
 - 6) Outflows (radiatively driven winds) should be present

- QSO luminosity fades rapidly

 tidal features visible only with very deep observations
 remnant reddens rapidly (E+A/K+A)
 "hot halo" from feedback
- sets up quasi-static cooling

 star formation terminated
 large BH/spheroid - efficient feedback
 halo grows to "large group" scales: mergers become inefficient
 growth by "dry" mergers

Models predictions for the feedback phase

XID2028 (z=1.5930) a QSO selected to be in the blow-out phase

A spatially resolved ionised outflow

Cresci, Mainieri, MB+2015, ApJ

J-band SINFONI

v_{max}~1500 km/s M_{ion}~300 M⊙/yr M_{ion}> SFR (~250 M⊙/yr) (following Cano-Diaz+2012) Residual map of **narrow H**α **component** (tracing star formation) from H+K SINFONI data

Outflow lies at the center of a cavity in SF regions

the outflow is **removing gas** from the host galaxy (**negative feedback**) and is triggering SF by outflow induced pressure at the edges (**positive feedback**)

PdBI (DDT) + ALMA (Cycle 3) + LUCI+ARGOS (commissioning)

1) A compact nucleus

Brusa et al. 2017, A&A re-submitted

resolved in "nucleus" and "plume"

Dust emitting region: ~1.5 kpc radius

LBT LUCI+ARGOS AO K band imaging

host galaxy resolved in LUCI, radius 5-10 kpc

Elongation seen in K-band, corresponding ~ to the plume location (North-East), nothing on HST/ACS

Merging faint source? tidal tail?

2) A fast rotating disk

CO(5-4) reconstructed image

same (deconvolved) size as dust continuum

same spatial origin

ALMA band 6 (6.5hr) CO(5-4) spectrum, 30σ detection

Velocity gradient along the source in the NW-SE direction

assuming rotating disc: v~400 km/s (^{3D}Barolo diTeodoro&Fraternali 2015)

(merging unlikely as gradient origin)

3) A spatially resolved molecular outflow

ALMA band 6 (6.5hr) CO(5-4) spectrum, 30σ detection

FWHM~500 km/s, but asymmetric line profile, reproduced with blue- and red-shifted components (as [OIII])

Brusa et al. 2017, A&A re-submitted

3) A spatially resolved molecular outflow

Imaging of the blue (< -350 km/s) and red (>350 km/s) channels

bi-directional outflow out to ~ 10 kpc and v~700 km/s

perpendicular to the rotation axis

Brusa et al. 2017, A&A re-submitted

3) A spatially resolved molecular outflow

continuum subtracted 'blue tail' flux map

The blueshifted outflow is co-spatial with the ionized outflow from [OIII], in between the star forming regions traced by $H\alpha$, dust continuum and U band

First direct detection of a resolved CO outflow spatially coincident with the ionized outflow component

Brusa et al. 2017, A&A re-submitted

4) An (exceptionally) low gas fraction...

Brusa et al. 2017, A&A re-submitted

I.3mm cont + CO(5-4):ALMA Cycle 3 CO(3-2): PdBI 1.5 Milky Way Flux_{col1-(1-1)} (Jy km s⁻¹) CO(2-1): ALMA Cycle 3 (PI: Daddi) 850micron cont: ALMA Cycle 3 (PI: Scoville) CO excitation ladder consistent with ULIRGs, SMGs and BzKs 0.5 Mrk 231 -> inferred CO(I-0) within a factor 3 0 0.5 Flux_{co[1-(1-1)]} (Jy km XID2028 Average SLEDs: 0.1 ULIRGs SMCs 0.05 BzKs Theory: Bournaud+15 0.01 Narayanan+14 2 10 11 0 1 3 4 5 7 8 9 6 Rotational quantum number J

4) An (exceptionally) low gas fraction...

Brusa et al. 2017, A&A re-submitted

I.3mm cont + CO(5-4): ALMA Cycle 3
CO(3-2): PdBl
CO(2-1): ALMA Cycle 3 (Pl: Daddi)
850micron cont: ALMA Cycle 3 (Pl: Scoville)

CO excitation ladder consistent with ULIRGs, SMGs and BzKs

-> inferred CO(I-0) within a factor 3

compact SF galaxy ($\Sigma_{SFR} \sim 25 M_{\odot}/yr kpc^{-2}$)

(comparable with bright sub-mm galaxies) Dust temperature from Greybody fit ~50 K

—> SB like α_{co}=0.8

Total $M_{gas} = 1 \pm 0.5 \times 10^{10} M_{\odot}$ (consistent with RJ continuum estimate)

Gas fraction < 5% despite SFR~270 M_•/yr!

An (exceptionally) low gas fraction... and depletion timescale

Gas fraction < 5% (<10%)

t_{depl} ~40 Myr (< 100 Myr)

Schinnerer+2016

Evidence for removal of molecular gas in AGN systems with outflows

Depletion time scale below that of inactive galaxies of similar SFR/M* properties

Evidence for removal of molecular gas (or change into ionised phase?) and/or of higher SFE in converting into stars the <u>residual</u> gas

RESULTS on a prototypical luminous, obscured QSO (XID2028)

Fast and powerful ionised/neutral/molecular winds with negative and positive feedback effects

[O III], [O II], MgII, CO(5-4) asymmetric line profile, v>700-1500 km/s, up to ~10 kpc ! ionised component comparable or *larger* than molecular one XID2028 (+XID5321, XID5395) in the NIRSpec GTO target list !

Compact and rotating SF molecular disc + high Σ SFR into an (already) massive galaxy

ALMA I.3mm continuum and CO(5-4) sizes

Molecular gas has been removed (or destroyed?) in AGN systems (with outflows)

Very low molecular gas fraction and depletion timescale

(I)AGN outflows do have effects on host galaxy properties

(2) Effects of outflows can be studied only through multiwavelength approach Importance of survey + dedicated follow-up

* XMM-Newton + COSMOS + multiwavelength photometry

* X-shooter + SINFONI + DEIMOS + LUCI/ARGOS + PdBI + ALMA + ...

(large) **obscured** AGN samples mapped in CO/dust at z=1-3 are still *MISSING*....

Need <u>more molecular gas observations</u> of AGN host galaxies at z~I-3, coupled with information on presence of winds and <u>reliable measurements of</u> <u>stellar masses</u>

SUPER-ALMA survey (PI: Mainieri;~few tens sources)

Carilli & Walter 2013

courtesy R. Decarli

Backup slides

Feeding & Feedback in galaxies & AGN

IR radiation pressure suppresses star formation efficiently

Star formation drops by factors ~ 2 - 3 halo-wide due to IR radiation pressure. <u>Star formation completely quenched in the innermost ~ 1 kpc.</u>

BUT need gas to be optically thick in IR.

Need high central gas densities, high dust masses, high gas covering fraction.

Multiphase winds

Fiore et al. 2017

compilation of ~90 AGN with outflows in different phases

at the highest AGN luminosity (Lbol>10^46) molecular and ionised winds have comparable mass outflow rates

XID2028:

mass outflow rate in the ionised gas component comparable or larger than molecular component

con:

- only few sources with 2 gas phases
- statistical relation / biases samples!

dust 1mm photometry dust FIR SED

other CO

0