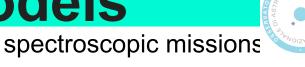
The number density of μ Maximum L. Pozzetti Γ


INAF - OSSERVATORIO ASTRONOMICO DI BOLOGNA

In collaboration with Euclid Consortium team and WFIRST team: **Empirical models:** <u>C. M. Hirata, J. E. Geach, A. Cimatti, O. Cucciati</u> **SAMs**: <u>C. Baugh, A. Merson, P. Norberg, and D. Shi</u> **FMOS data**: <u>Valentino, F.; Daddi, E.; Silverman, J. D. et al.</u> **HOD:** <u>F. Castander, P. Fosalba, L. Blot, and validation team</u> **WISP-extended**: <u>C. Scarlata, M. Bagley, D. Eisenstein, A.Cimatti, et al.</u>

@ GEE - Firenze 2017

Hα Empirical models

HαLF is a key input for forecasts for future near-IR spectroscopic missions (Euclid, WFIRST), but also Galaxy evolution (SFRD)

LFs from Hα surveys:

Euclid Wide (Hα @ 0.9<z<1.8, 15,000 deg^2, F<2e-16 cgs) Euclid Deep (Hα @0.4<z<1.8, 40 deg^2, F<0.5e-16) WFIRST (Hα @ 1<z<2, 2200 deg^2, F<1e-16)

Low-z : - Optical spectroscopy

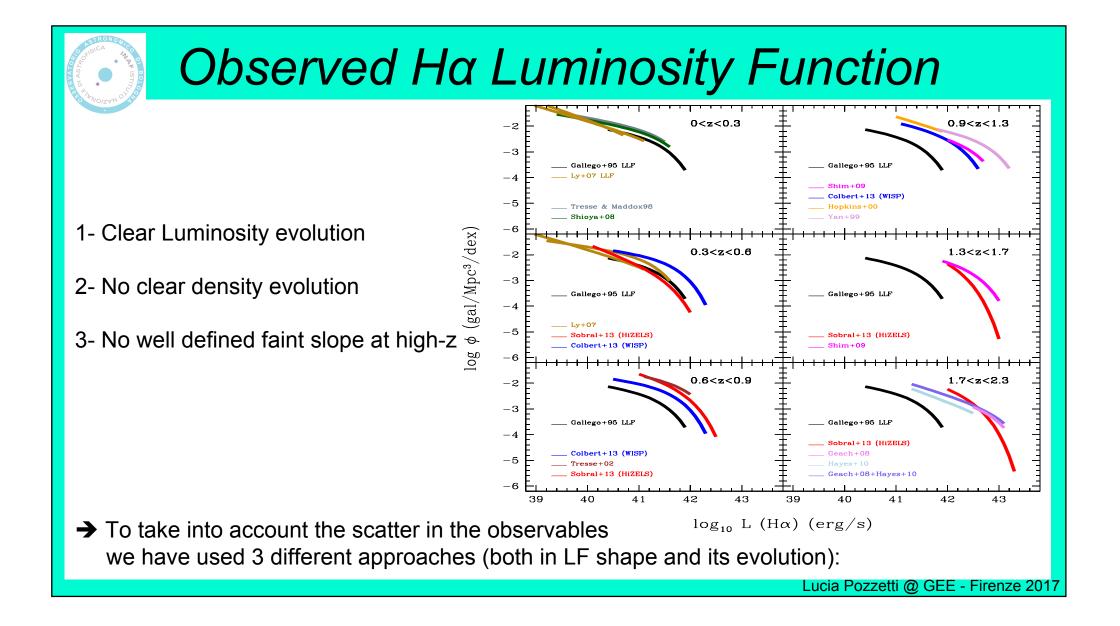
High-z : - NIR single slit spectroscopy: but small area, single objects

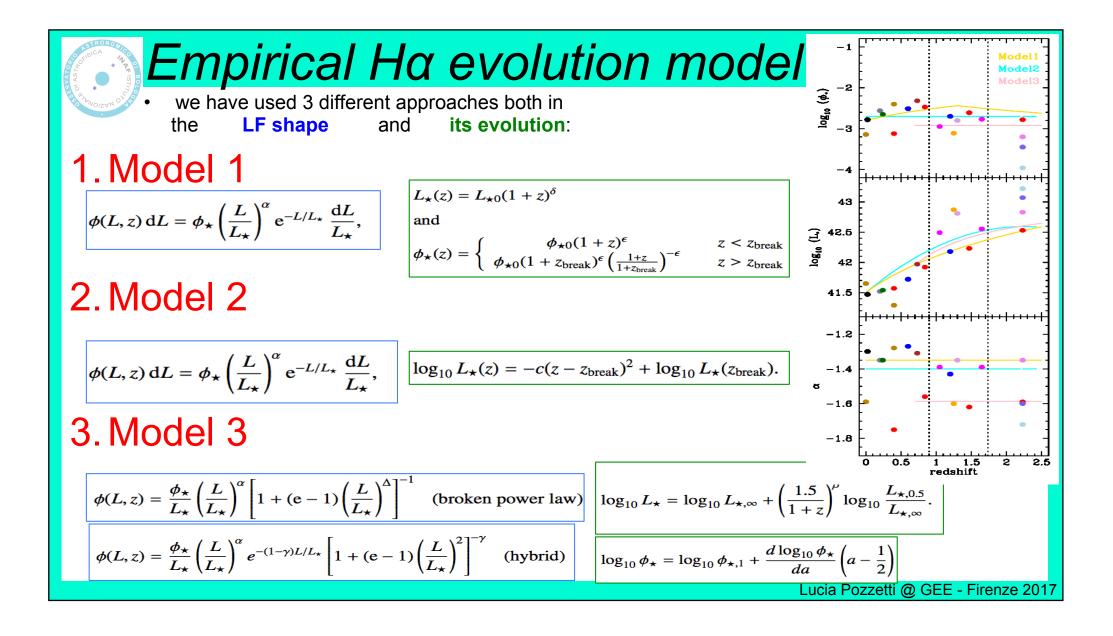
- NIR Narrow-band: large area but small z range

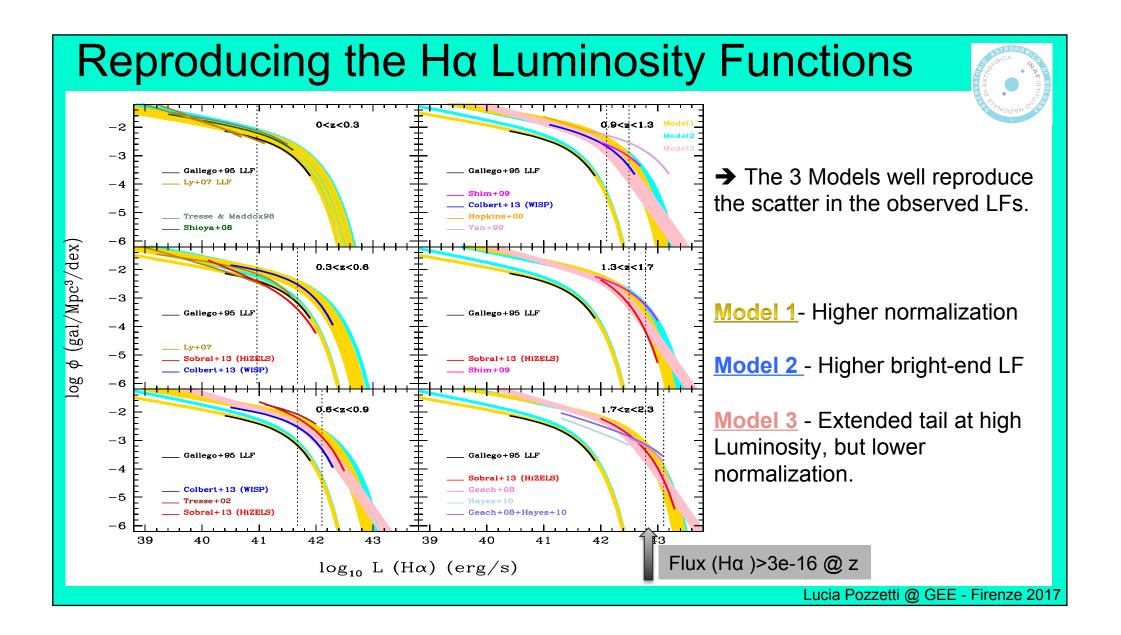
- NIR slitless spectroscopy (NICMOS & WF3): large z range but small area WARNING: ALL LOW STATISTIC SURVEYS

⇒ We have updated old empirical model by Geach et al. 2010 using a complete set of observed LFs, including also the most recent ones from grism and slitless HST spectroscopy;

Observed Ha Luminosity Function


Table 1. The empirical Schechter parameters for the various surveys considered, ordered by redshift. Units are Mpc⁻³ (ϕ_{\star}) and erg s⁻¹ (L_{\star}).

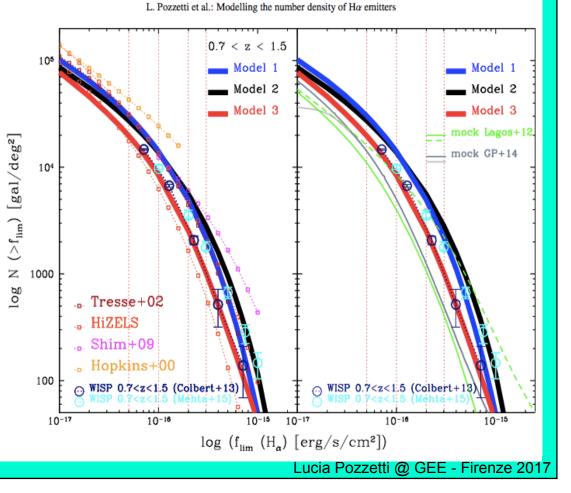

Redshi	ft	α	$\log_{10} L_{\star}$	$\log_{10}\phi_{\star}$	delta-z	Area	Instr.	Reference(s)	Models
0.0225		-1.3	41.47	-2.78	0-0.045	471	prism	Gallego et al. (1995)	1,2
0.07,0	.09	-1.59	41.65	-3.14	0.02	0.24	Narrow-band	Ly et al. (2007)	1,2
0.2	-	-1.35	41.52	-2.56	0-0.3	0.03	CFHT	Tresse & Maddox (1998)	1,2
0.24		-1.35	41.54	-2.65	0.02	1.54	Narrow-band	Shioya et al. (2008)	1,2
0.24		-1.70	41.25	-2.98	0.02	0.24	Narrow-band	Ly et al. (2007)	1,2
0.4	-	-1.28	41.29	-2.4	0.02	0.24	Narrow-band	Ly et al. (2007)	1,2
0.4		-1.75	41.57	-3.12	0.02	2	Narrow-band	HiZELS (Sobral et al. 2013)	1,2,3
0.6		-1.27	41.72	-2.51	0.3-0.9	0.037	HST+WF3	WISP (Colbert et al. 2013)	1,2,3
0.73	-	-1.31	41.97	-2.319	0.5-1.1	CFRS	ISAAC	Tresse et al. (2002)	1,2
0.84		-1.56	41.92	-2.47	0.04	2	Narrow-band	HiZELS (Sobral et al. 2013)	1,2,3
1.05		-1.39	42.49	-2.948	0.7-1.4	0.029	HST+NICMOS	Shim et al. (2009)	1,2,3
1.2	-	-1.43	42.18	-2.7	0.9-1.5	0.037	HST+WF3	WISP (Colbert et al. 2013)	1,2,3
1.25		-1.6	42.87	-3.11	0.7-1.8	0.0012	HST+NICMOS	Hopkins et al. (2000)	1,2
1.3		-1.35	42.81	-2.801	0.7-1.9	0.018	HST+NICMOS	Yan et al. (1999)	1,2,3
1.47		-1.62	42.23	-2.61	0.04	2	Narrow-band	HiZELS (Sobral et al. 2013)	1,2,3
1.65	-	-1.39	42.55	-2.768	0.7-1.9	0.029	HST+NICMOS	Shim et al. (2009)	1,2,3
2.23		-1.59	42.53	-2.78	0.04	2	Narrow-band	HiZELS (Sobral et al. 2013) ^a	1,2,3
2.23		-1.72	43.22	-3.96	0.04	Goods-S	Narrow-band	Hayes et al. (2010) ^b	1,2
2.23		-1.6	43.07	-3.45				HiZELS (Geach et al. 2008) and Hayes et al. (2010) ^{a,b}	1,2
2.23		-1.35	42.83	-3.2	0.04	0.6	Narrow-band	HiZELS (Geach et al. 2008) ^a	1,2


^aThe Sobral et al. (2013) analysis includes a superset of the fields used for the earlier HIZELS paper (Geach et al. 2008). ^bHayes et al. (2010) present results both internal to their HAWK-I data, and a joint fit including the Geach et al. (2008) results.

1- We assume H α only (at high-z only statistically corrected for blended [NII]: H α =(H α +[NII])*0.7) 2-H α observed, i.e. not corrected for extinction (1 mag or 0.4 dex in log(L*) if not

specified)

Predicted Hα Galaxy counts


- + from WISP (points)
- + LFs integrated over 0.7<z<1.5 (dotted)

MODELS 1, 2, 3 :

- + Modesl 1, 2 reproduce the range of data, but slightly higher than WISP;
- + Model 3 reproduce better WISP but lower than most of LFs.

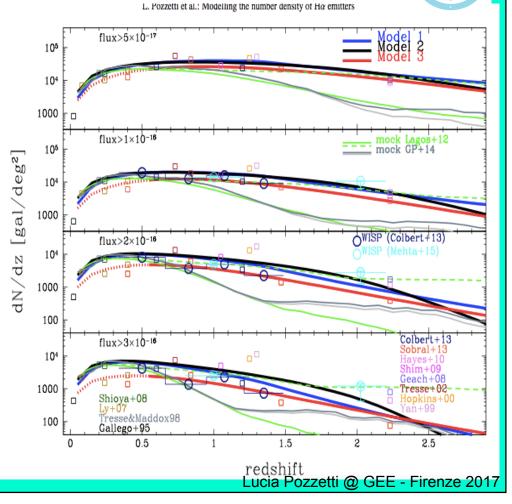
EUCLID MOCKS (using Durham SAMs)

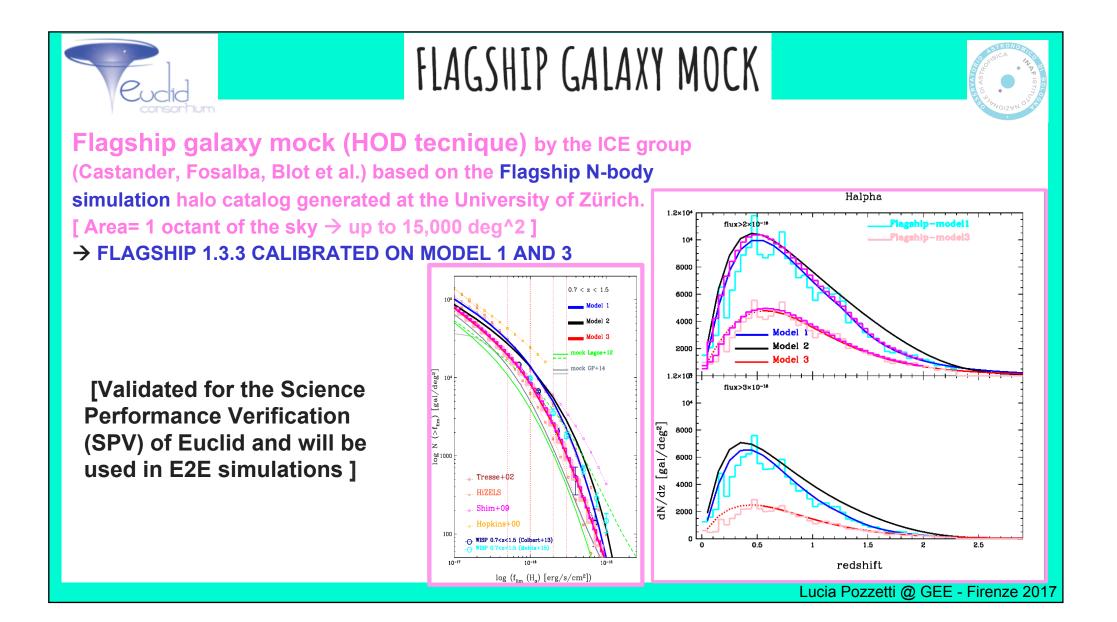
- counts lower (by a factor >2) than Mod. 1,2,3:
- Higher counts at bright fluxes (>1e-15) for unextincted fluxes

Predicted Ha redshift distribution

★ Halpha dN/dz:

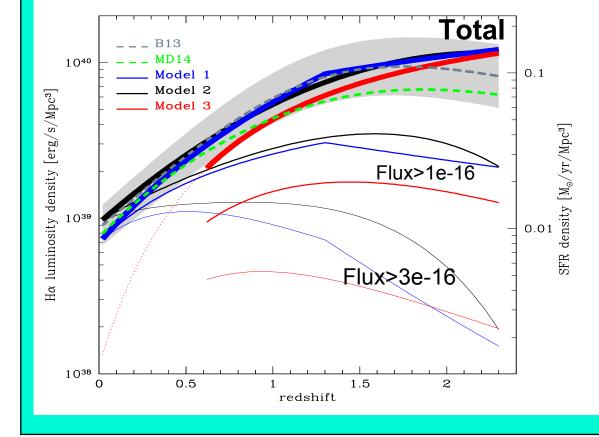
OBSERVED DATA:


- + from Halpha surveys (points)
- + WISP

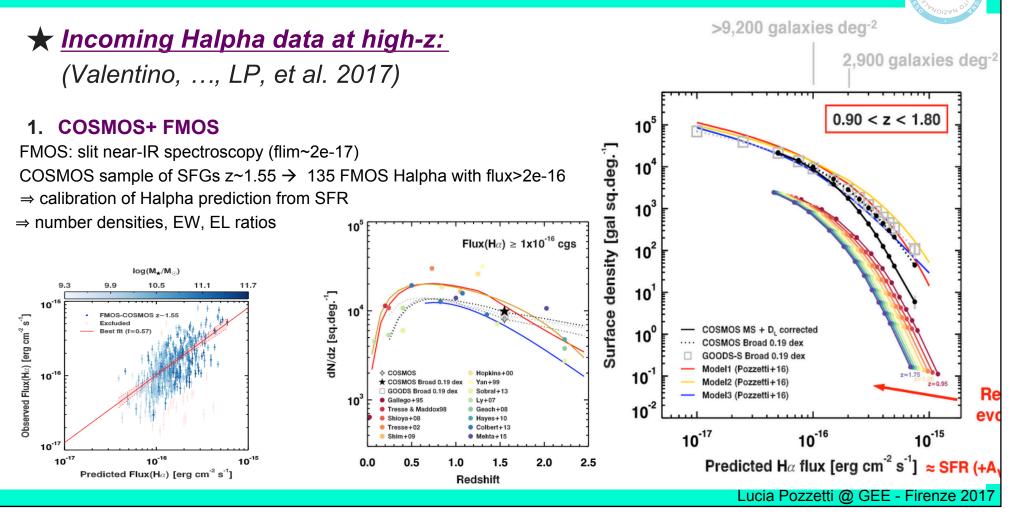

MODELS 1, 2, 3 :

- + Modesl 1, 2 reproduce the range of counts, but slightly higher than WISP;
- + Model 3 reproduce better WISP but lower than most of LFs.

EUCLID MOCKS (using Durham SAMs)


 Mocks predicted counts lower than Models 1,2,3:
 Consistent up to z~2 only if consider unextincted Halpha fluxes.

Ha Luminosity Density or SFRD

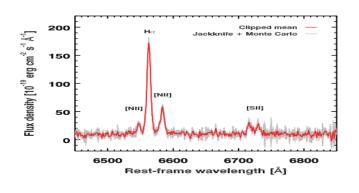


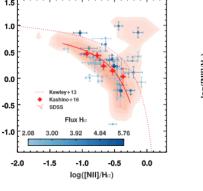
We have derived SFHs from Halpha luminosity density (LD):

- The Total LD of Models 1,2,3 are consistent with SFH from Behroozi et al. 2013 and Madau&Dickinson 2014

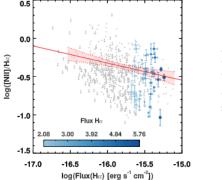
- LD (>1e-16 @ z=1.5) see ~30% of the Total LD,. F>0.5e-16 ~50%

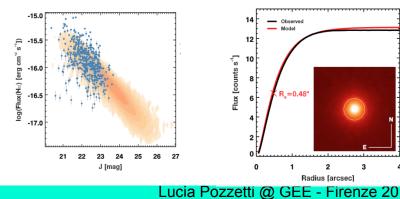
New Hα data: FMOS

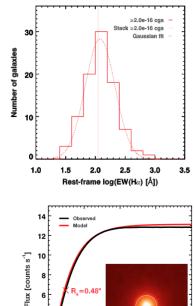

New Hα data: FMOS



(Valentino, ..., LP, et al. 2017)


1. COSMOS+ FMOS


FMOS: slit near-IR spectroscopy (flim~2e-17) COSMOS sample of SFGs z~1.55 135 FMOS Halpha with flux>2e-16 \Rightarrow number densities, EW, EL ratios

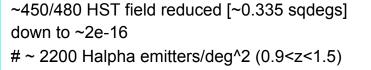


(∂H/[IIIO])6o

2 Radius [arcsec]

n

New Hα data: Extended WISP


★ HST archival data (WISP extension)

 $H\alpha + [NII]$

[OIII]λ5007

 H_{α} +[NII] sources with both lines

(PI. Scarlata, ... + LP involved)

Redshift

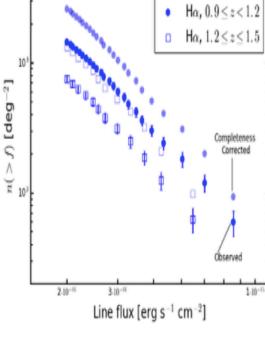
H magnitude

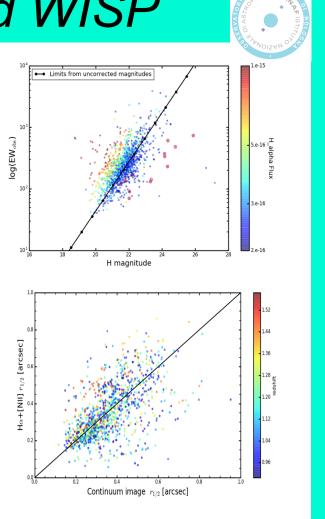
 \Rightarrow number densities, EW, sizes, EL ratios

2

E

Flux [erg s⁻¹


cm⁻²]

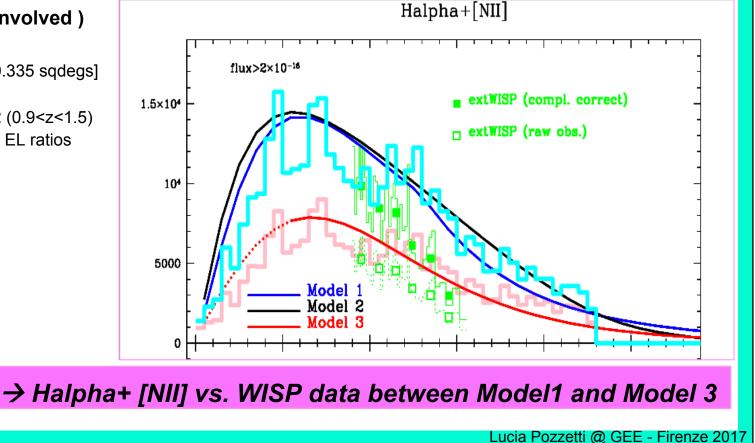

 S^{-1}

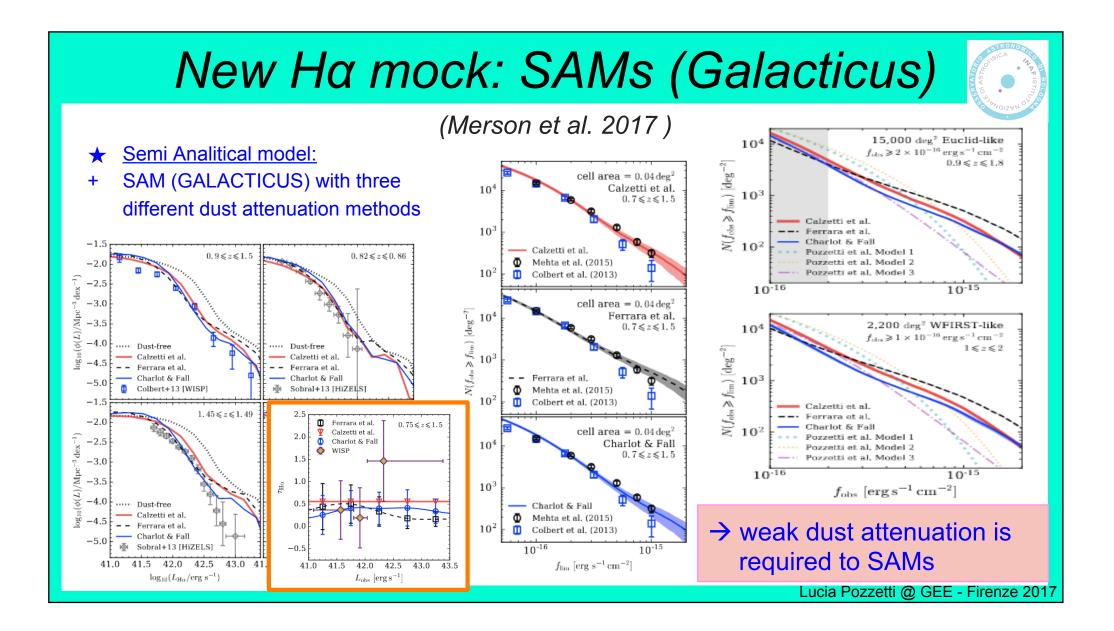
Flux [erg

10-16

10⁻¹⁶

New Hα data: Extended WISP


★ HST archival data (WISP extension)


(PI. Scarlata, ... + LP involved)

~450/480 HST field reduced [~0.335 sqdegs] down to ~2e-16

~ 2200 Halpha emitters/deg^2 (0.9<z<1.5)

 \Rightarrow number densities, EW, sizes, EL ratios

Conclusions

Given the large scatter in the observed LFs covering similar redshift ranges, all the 3 models provide a good description of the data. In particular:

- Model 1, 2 reproduce a larger set of data, while Model 3 is extreme and reproduce only a subset of data, but more similar to Euclid/WFIRST slitless sp.

- New constrain from FMOS and extended-WISP survey.

→ Euclid Wide survey (0.9<z<1.8 on 15,000 deg^2) : ~72 million Hα emitters
 → Euclid Deep survey (0.4<z<1.8 40 deg^2) : ~ 1.3- 2 million Hα emitters
 → WFIRSTsurvey (1<z<2, 2200 deg^2) : ~ 16-26 million Hα emitters
 → LFs and SFHD

→ The 3 Models will be used by Euclid consortium for Science Performance Verification (SPV) for E2E simulations to derive completeness, purity vs. redshift and flux(H α) and therefore the effective numbers of objects.