

Star formation and Galaxy evolution as traced through cosmic env. and time

Luca Graziani

In collaboration with:

First@INAF, Italy: R. Schneider, M. Ginolfi, S. Marassi, R. Valiante, M. de Bennassuti UniFI: S. Salvadori MPA, Garching, Germany: B. Ciardi, M. Berge Eide, M. Glatzle. UCL, London, UK: D. Kawata. GEE5, November 15-17 2017, Firenze, Italy

Basic elements for Galaxy Formation (and evolution?)

The diversity of galaxy populations: in Space and Time

Morphology/Size: spirals / ellipticals /dwarfs

Luminosity and Stellar Mass: L~ $[10^{12} - 10^3]$ linked to M_{*} through stellar populations & RT

Mass of gas: cold/hot phase \rightarrow Models for Disk/Halo

Color:

Models for Stellar Populations cold/diffuse ISM \rightarrow RT through dust

Environment/Feedback:

Dynamics / RT / Chemistry

Nuclear Activity: AGN Feedback

Galaxy Formation and Evolution (Mo et al.)

Large DM Sims + SAM Modeling of galaxy formation and evolution

Dark matter haloes + physically motivated prescriptions in **SAM**, calibrated at z=0

Large DM volumes necessary for galaxy surveys (mp_{XXL} = $8.456 \times 10^9 M_{sun}$) \rightarrow DM haloes hosting M_{*} > $1.5 \times 10^{10} M_{sun}$ (De Lucia et al. 2006)

Large scale: from 100h⁻¹ cMpc up to 3h⁻¹ Gpc

SAM modeling:

Galaxy evolution follows DM evolution: mergers / accretion / dynamical interactions

Hot halo \rightarrow gas cooling \rightarrow cold disk formation \leftrightarrow Disk instabilities

Star formation in disks: quiescent / Merger and instability induced starbursts

Supernova feedback and the production of metals

Supermassive black holes formation and feedback on star formation

Millenium II / Millenium / MXXL

(Springel 2005/Boylan-Kolchin 2009/ Angulo 2012)

Horizon Runs (Kim et al. 2011)

MultiDark-Galaxies (Knebe 2017)

Projected dark matter density for the 15 most massive MXXL Haloes Each image is a region 6×3.7 h⁻¹ Mpc wide 20 h⁻¹ Mpc deep.

SAM Modeling of galaxy formation and evolution (nIFTy project)

Key property: stellar mass function

"Quite a range in both galaxy abundance and mass both at z = 0 (factor ~ 3) and larger at z = 2 \rightarrow broad variation in the location of the peak in SFR"

Low sensitivity to halo mass defintion and IMF modeling

Models are sensitive to the specific DM model And require re-calibration

Large DM Sims +SAM Modeling of galaxy formation and evolution

Key property: SFR

The peak of star formation is $z \sim 2 - 3$ followed by a rapid decrease at late times (e.g.Madau & Dickinson 2014).

Differences in amplitude of an order of magnitude at redshift z > 6.

Great diversity in star formation rates across models irrespective of the stellar mass of the galaxy.

(Knebe et al. 2015, MNRAS)

All the curves normalized by SFR (z=0) to separate trends from absolute differences.

Parameter Tuning is by far the most decisive factor for the scatter (Henriques et al. 2009; Mutch et al. 2013).

Integrated properties can be statistically reproduced after tuning but other galaxy features require an **hydrodynamical approach**

Large scale Hydrodynamical projects: the Illustris runs

Illustris/TNG Runs (Vogelsberger, 2014 / Springel 2017): Moving mesh \rightarrow Arepo 0 < z < 20

name	volume [(Mpc) ³]	DM particles / hydro cells / MC tracers	$\epsilon_{ m baryon}/\epsilon_{ m DM}$ [pc]	$m_{ m baryon}/m_{ m DM}$ $[10^5 { m M}_\odot]$	$r_{ m cell}^{ m min}$ [pc]	$m_{ m cell}^{ m min}$ [$10^5 { m M}_{\odot}$]
Illustris-1 Illustris-2 Illustris-3	106.5^{3} 106.5^{3} 106.5^{3}	$3 \times 1,820^3 \cong 18.1 \times 10^9$ $3 \times 910^3 \cong 2.3 \times 10^9$ $3 \times 455^3 \cong 0.3 \times 10^9$	710/1, 420 1, 420/2, 840 2, 840/5, 680	12.6/62.6 100.7/501.0 805.2/4008.2	48 98 273	$0.15 \\ 1.3 \\ 15.3$

SUBGRID PHYSICS:

- Radiative (UVB+Cloudy)
- H-Reionization: UVB on instant.
- Stochastic star formation
- Cold phase not modeled consistently
- Feedback from SN Ia / II / AGB
- Feedback from star formation: Kinetic wind feedback
- Black holes and feedback from AGN → SF quencing by stochastic thermal feedback
- Magnetic field (TNG)
- Calibrated to reproduce mean stellar mass and halo mass from abundance matching

A variety of galaxy types in the Illustris ref. Run

Large scale Hydrodynamical projects: the EAGLE runs

EAGLE Run (Schaye 2015): SPH → Gadget-3

0 < z < 20

The resolution suffices to marginally resolve the Jeans scales in the warm ISM.

SUBGRID PHYSICS (OWL):

- Radiative cooling/Photoheating (UVB+Cloudy)
- H-Reionization: UVB on instant.
- Star formation: Z-dep threshold
- Cold phase not modeled consistently
- Stellar mass-loss and Type Ia supernovae
- Energy feedback from star formation: stochastic thermal feedback
- Black holes and feedback from AGN → SF quencing by stochastic thermal feedback
- Data calibrated at z~0 to match galaxy stellar mass function

Name	L (cMpc)	Ν	$(M_{\bigodot})^{m_g}$	$m_{\rm dm}$ (M _O)	$\epsilon_{\rm com}$ (comoving kpc)	$\epsilon_{\rm prop}$ (pkpc)
L025N0376	25	376 ³	1.81×10^{6}	9.70×10^{6}	2.66	0.70
L025N0752	25	752 ³	2.26×10^{5}	1.21×10^{6}	1.33	0.35
L050N0752	50	752 ³	1.81×10^{6}	9.70×10^{6}	2.66	0.70
L100N1504	100	1504 ³	1.81×10^{6}	9.70×10^{6}	2.66	0.70

Examples of galaxies simulated with the RT code SKIRT (Baes et al. 2011).

Other Large scale Hydrodynamical projects:

Blue Tides Simulation (SPH) (http://bluetides-project.org/) \rightarrow largest hydrodynamic simulation L = 400 Mpc/h down to z~8 (Croft, 2015)

Renaissance Simulations (AMR - ENZO) (http://galaxyportal.sdsc.edu/) → L=24.4h⁻¹ cMpc, down to z~6 Radiation Hydrodynamics + Metal enrichment AMR Zoom-in → Stellar population transition/mini-halos (Xu, 2016)

SPHINX simulations - the first billion years and reionisation (AMR-RAMSES): Cosmological radiation-hydrodynamical simulations of the first billion years of galaxy evolution in the Universe, capturing the interplay of hundreds of galaxies and resolving their inter-stellar medium down to scales of a few parsec. (Ongoing L~ 5-10 cMpc/h)

FIRE Project (GIZMO) (https://fire.northwestern.edu/about-fire/)

Combining spatial and temporal evolution with mass resolution in a flexible modeling remains difficult.

Accurate Feedback implementation remains the most challenging task.

Feedback in galaxy formation (Ciardi, Ferrara, 2005; Bromm, V. & Yoshida, N., 2010)

Change in source type / Gas cooling

Feedback

(Ciardi, Ferrara, 2005; Bromm, V. & Yoshida, N., 2010)

- Is highly **non-linear** and **poorly constrained** by observations
- Nature/role of radiation sources not clear / chemistry not fully understood (e.g. grain growth) / wind models still unconstrained
- Requires multi-scale numerical simulations but a common framework is missing

Tools @ ERC FIRST:

- Radiative → Chemical Feedback → CRASH4
- Star/galaxy formation \rightarrow Mechanical Feedback \rightarrow Chemical \rightarrow dustyGadget
- Radiative + Chemical Feedback \rightarrow Star formation \rightarrow MW Reionisation \rightarrow GAMESH

Feedback by first Stellar Populations: Radiative \rightarrow Chemical

First Stars / First QSOs

Radiative feedback

ionisation, heating, RT through dust

Chemical feedback

C.RA.S.H.

Monte Carlo 3D Radiative Transfer code

(H-ionising UV: 13.6 eV - 200 eV)

- Ionisation fractions of H, He, metals
- Gas temperature
- Radiation intensity / SED
- Ionisation and heating rates
- Reionisation history: x(z) ,T(z)

CRASH4

- Multi-frequency band RT:
 - \rightarrow Extend up to soft x-rays: 10 KeV.
 - \rightarrow Include Lya RT coupled with continuum.
 - \rightarrow LW band and molecules: H₂, CO.
 - \rightarrow Dust \rightarrow photon scattering **IS** relevant.
- Secondary ionisation

$$E_{\gamma} - I_{A} = E_{e} \quad \xrightarrow{hv} \stackrel{A}{\frown} \quad \Box$$

 $E_e > 30eV$ could collisionally

ionise/excite the remaning neutral part.

Frequency	Wavelength			
3 Hz	ELF	10 ⁸ m		
3 x 10 ¹ Hz	SLF	10 ⁷ m		
3 x 10 ² Hz	ULF	10 ⁶ m		
3 x 10 ³ Hz	VLF	10 ⁵ m		
3 x 10 ⁴ Hz	LF	10 ⁴ m		
3 x 10 ⁵ Hz	MF	10 ³ m	Radio banda	
3 x 10 ⁶ Hz	нг	10 ² m	AM radio	
3 x 10 ⁷ Hz	VHF	10 ¹ m	Short wave CB radio EM radio and	
3 X 10 ⁸ Hz	IIHE	1 m	television Mobile phone:	
3 x 10 ⁹ Hz	one one	10 ⁻¹ m	GPS	
3 x 10 ¹⁰ Hz	BUB	10 ⁻² m	microwaves	
3 x 10 ¹¹ Hz	Enr	10 ⁻³ m	Energy per photon	
4		10 ⁻⁴ m	1.24 x 10 ⁻² eV	
Infrared		10 ⁻⁵ m	1.24 x 10 ^{−1} eV	
¥ Visible		10 ⁻⁶ m	1.24 eV	
Ultraviolet		10 ⁻⁷ m	1.24 x 10 ¹ eV	
I		10 ⁻⁸ m	1.24 x 10 ² eV	
X Ravs		10 ⁻⁹ m	1.24 x 10 ³ eV	
		10 ⁻¹⁰ m	1.24 x 10 ⁴ eV	
mass of		10 ⁻¹¹ m	1.24 x 10 ⁵ eV	
electron		10 ⁻¹² m	1.24 x 10 ⁶ eV	
(gamma ravs)		10 ⁻¹³ m	1.24 x 10 ⁷ eV	
		10 ⁻¹⁴ m	1.24 x 10 ⁸ eV	
mass <u>of</u> proton		10 ⁻¹⁵ m	1.24 x 10 ⁹ eV	
			THE TOTOLS OF A	

Impact of Galaxies and QSOs-Small scale IGM

(Kakiichi, LG, et al.,2016, MNRAS, ArxiV: 1607.07744)

 $10h^{-1}\,{\rm cMpc}$

Effects of x-rays on HII regions of high-z QSOs on Global reionisation (z> 6).

- \rightarrow How does the topology of ionised bubbles change?
- \rightarrow What is the minimum scale to capture the statistics of bubble evolution?
- \rightarrow Relative roles of stars/QSOs \rightarrow Model stellar populations / QSO
- \rightarrow IGM heating \rightarrow Feedback on star formation in small galaxies
- \rightarrow x-rays from binaries?? \rightarrow Heating of the IGM at z > 10

(Iliev 2013, Madau 2017, Madau&Fragos 2016, Madau&Haardt 2015, Compostella 2014)

Epoch of Heating: effects of x-ray binaries

(M. Berge Eide, LG, et al., sub.)

Feedback along Galaxy formation: Star formation ↔ Chemical+Radiative

Radiative Feedback

LG evolution: Dixon 2017, Ocvirk 2014, 2015, Sawala 2015, Salvadori 2007, 2010

GAMESH = GAMETE + CRASH + N-Body

N-Body simulation: dynamical evolution of DM halos

GAMETE simulation: Star formation, metal production

CRASH simulation: RT, gas ionisation heating

Provides redshift evolution / mini halo resolution

IGM reionisation changes the statistics of SF galaxies

 \mathbf{Z}

Star formation statistics are very sensitive to radiative environment.

Reionisation is highly inhomogeneous

Galaxy environment changes in space and along the redshift evolution o the Local Group

z~6

z~12

Testable consequences: the MDF of the Milky Way at z=0

GAMESH \rightarrow **BARYONS** in MW and MW progenitors

- MW-like halo fine in DM properties: M, T, V_c, c
- 4 cMpc, well resolved volume \rightarrow LG
- Satellite statistics good!
- M31 position → wrong! Outside the LG!, M32, M33, LMC like halos present but in arbitrary positions

GAMESH \rightarrow **BARYONS** in MW and MW progenitors

GAMESH2 \rightarrow **BARYONS** in MW and MW progenitors

Graziani, de Bennassuti, Schneider et al., MNRAS, 2017

GAMESH \rightarrow **BARYONS** in MW and MW progenitors

Distribution of the MW progenitors relative to the fundamental plane of metallicity (Hunt et al. 2016a)

Graziani, de Bennassuti, Schneider et al., MNRAS, 2017

The description of these physical processes obtained by GAMESH leads to results consistent with observations.

CONCLUSIONS: Feedback and star formation

- Radiative/Chemical feedback in Galaxy formation can be studied with multi-frequency RT codes:
 - \rightarrow Effects on successive star formation
 - \rightarrow Effects on IGM / ISM metal ions (Large scale env.).
 - \rightarrow Coupled with chemical feedback

(GAMESH) can make predictions on: MDF / Chemical enrichment / SF history

- Chemical Feedback now accounts for dust production and evolution self-consistely incorporated into chemo-dynamical simulations of galaxy formation (dustyGadget)
- Coupling Chemistry + Hydro with RT \rightarrow next step for consistent feedback from / to star formation!