Molecular complexity in the distant universe

Chiara Feruglio Scuola Normale Superiore Pisa, Italy

Astronomical Complex Organic Molecules in different environments - Palazzo Strozzi, Firenze, March 10-11, 2016

Talk Outline

Interest of extragalactic chemistry

Results and challenges about:

- Complex molecules at early cosmic epochs
- Complex molecules in the mid age universe
- COMs at the current cosmic epoch in the extragalactic environment

Molecular complexity in the universe

Four points of view

Cosmologist:

Chemistry governs cosmological galaxy growth/evolution Nature of the gas: similar/different to MW chemistry?

Astrophysicist: Star formation and (proto)-planet formation

- **Chemist**: origins of chemistry on the Planet
- Human being: The pathway(s) to life on the Planet How common is life in the universe?

Molecular complexity in the universe

Four points of view

Cosmologist:

Chemistry governs cosmological galaxy growth/evolution Nature of the gas: similar/different to MW chemistry?

- Astrophysicist: Star formation and (proto)-planet formation
- **Chemist**: origins of chemistry on the Planet
- Human being: The pathway(s) to life on the Planet How common is life in the universe?

Molecular complexity in the universe

First stars 100 Myr Eary metal enrichment

Earth formation 4 billion years ago z ~ 0.5

Detecting molecules in the distant universe

Rotational ad vibrational transitions from molecules at (sub)-mm wavelenghts

Detecting molecules in the distant universe

Rotational ad vibrational transitions from molecules at (sub)-mm wavelenghts

Detecting molecules in the distant universe

Rotational ad vibrational transitions from molecules at (sub)-mm wavelenghts

Emission line studies:

- Iuminous high redshift galaxies
- molecular gas reservoirs, mainly dense gas
- limited by beam resolution / distance dilution

Asborption line studies:

- no distance dilution, only limited by bkg continuum source
- outstanding spatial resolution (size of bkg source, ~pc scale)
- low density regime, excitation dominated by CMB photons optical depths/columnn densities easily derived
- limited by # of mm absorbers (only a handful known)

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	>8 atoms
ОН	H ₂ O	H ₂ CO	<i>c</i> -C ₃ H ₂	CH ₃ OH	CH ₃ CCH	HC ₆ H	<i>c</i> -C ₆ H ₆ *
CO	HCN	NH ₃	HC ₃ N	CH ₃ CN	CH ₃ NH ₂		C ₆₀ * (?)
H ₂ *	HCO ⁺	HNCO	CH ₂ NH	HC ₄ H*	CH ₃ CHO		PAHs
СН	C ₂ H	C ₂ H ₂ *	NH ₂ CN	HC(O)NH ₂	HC ₅ N		
CS	HNC	H ₂ CS?	<i>I</i> -C ₃ H ₂				
CH ⁺ **	N_2H^+	HOCO ⁺	H ₂ CCN				
CN	OCS	<i>с</i> -С ₃ Н	H ₂ CCO				
SO	HCO	H ₃ O ⁺	C ₄ H				
SiO	H ₂ S	<i>І</i> -С ₃ Н					
CO ⁺	SO ₂						
NO	HOC ⁺						
NS	C ₂ S						
NH	H ₂ O ⁺						
OH ⁺	HCS ⁺						
HF	H ₂ Cl ⁺ 2014						
SO ⁺	NH ₂ 2014						
ArH ⁺ 2015							

Early cosmic epochs

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	>8 atoms
ОН	H ₂ O	H ₂ CO	<i>c</i> -C ₃ H ₂	CH ₃ OH	CH ₃ CCH	HC ₆ H	<i>c</i> -C ₆ H ₆ *
СО	HCN	NH ₃	HC ₃ N	CH ₃ CN	CH ₃ NH ₂		C ₆₀ * (?)
H ₂ *	HCO ⁺	HNCO	CH ₂ NH	HC ₄ H*	CH ₃ CHO		PAHs
СН	C ₂ H	C ₂ H ₂ *	NH ₂ CN	HC(O)NH ₂	HC₅N		
CS	HNC	H ₂ CS?	<i>I</i> -C ₃ H ₂				
CH ⁺ **	N_2H^+	HOCO ⁺	H ₂ CCN				
CN	OCS	<i>с</i> -С ₃ Н	H ₂ CCO				
SO	HCO	H ₃ O ⁺	C ₄ H				
SiO	H ₂ S	<i>І-</i> С ₃ Н					
CO ⁺	SO ₂						
NO	HOC ⁺						
NS	C ₂ S						
NH	H ₂ O ⁺						
OH ⁺	HCS ⁺						
HF	H ₂ CI ⁺ 2014						
SO+	NH ₂ 2014						
ArH ⁺ 2015							

arly cosmic epochs		Only late cosmic epochs					
2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	>8 atoms
ОН	H ₂ O	H ₂ CO	c-C ₃ H ₂	CH ₃ OH	CH ₃ CCH	HC ₆ H	c-C ₆ H ₆ *
СО	HCN	NH ₃	HC ₃ N	CH ₃ CN	CH ₃ NH ₂		C ₆₀ * (?)
H ₂ *	HCO ⁺	HNCO	CH ₂ NH	HC ₄ H *	CH ₃ CHO		PAHs
СН	C ₂ H	C ₂ H ₂ *	NH ₂ CN	HC(O)NH ₂	HC₅N		
CS	HNC	H ₂ CS?	/-C ₃ H ₂				
CH ⁺ **	N_2H^+	HOCO ⁺	H ₂ CCN				
CN	OCS	<i>с</i> -С ₃ Н	H ₂ CCO				
SO	НСО	H ₃ O⁺	C ₄ H				
SiO	H ₂ S	/-C ₃ H					
CO ⁺	SO ₂						
NO	HOC ⁺						
NS	C ₂ S						
NH	H ₂ O ⁺						
OH ⁺	HCS ⁺						
HF	H ₂ CI ⁺ 2014						
SO ⁺	NH ₂ 2014						
ArH ⁺ 2015							

rly cosmi	c epochs	Only late cosmic epochs					
2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	>8 atoms
ОН	H ₂ O	H ₂ CO	<i>c</i> -C ₃ H ₂	CH ₃ OH	CH ₃ CCH	HC ₆ H	c-C ₆ H ₆ *
СО	HCN	NH ₃	HC ₃ N	CH ₃ CN	CH ₃ NH ₂		C ₆₀ * (?)
H ₂ *	HCO ⁺	HNCO	CH ₂ NH	HC ₄ H*	CH ₃ CHO		PAHs
СН	C ₂ H	C ₂ H ₂ *	NH ₂ CN	HC(O)NH ₂	HC ₅ N		
CS	HNG	H ₂ CS?	<i>I</i> -C ₃ H ₂				
CH ⁺ **	N ₂ H ⁺	HOCO ⁺	H ₂ CCN				
CN	OCS	<i>с</i> -С ₃ Н	H ₂ CCO				
SO	HCO	H ₃ O ⁺	C ₄ H				
SiO	H ₂ S	/-C ₃ H					
CO ⁺	SO ₂			_		_	
NO	HOC ⁺	• Ca	ations	and si	mple h	nydrid	es:
NS	C ₂ S	ha	sis of l	SM ch	amistru	-	
NH	H ₂ O ⁺		515 01 14		Sinistry		
ОН⁺	HCS ⁺						
HF	H ₂ CI ⁺ 2014						
S0 ⁺	NH ₂ 2014						
ArH ⁺ 2015							

The first billion years: Dust & Gas

Large amounts of dust and gas in place when universe was ~5% of its age

e.g. Watson+2014, Gallerani+2010,2014, Jiang+2010

The first billion years: Dust & Gas

Large amounts of dust and gas in place when universe was ~5% of its age

e.g. Watson+2014, Gallerani+2010,2014, Jiang+2010

Only CO molecule detected, but grain surface chemistry possible at very early cosmic epochs

The second billion years: Water

HLSJ091828.6+514223 at z=5.3 Combes+2012

Quasar APM08279+5255 z=3.9 van der Werf+2011

H₂O luminosities comparable to CO lines: large water vapor reservoirs at early cosmic epochs

Water is everywhere

Water widespread in luminous galaxies/AGN at z=4 to z=0 Omont+2013 van der Werf+2010

Water is everywhere

Water widespread in luminous galaxies/AGN at z=4 to z=0 Omont+2013 van der Werf+2010

- H₂O luminosity comparable CO luminosity ,1-2 orders of mag larger than in Orion bar
- Requires strong FIR radiation pumping by dust and X-ray heating.
- May also be related to shocks

The second billion years: HCN, HCO⁺

Most complex molecules (3 athoms) in luminous quasar APM 08279 when the universe was only 10% of its age

HCN/HCO⁺

- massive dense gas reservoirs
- HCN energetic molecule
- HCO+ reactive ion

Riechers+2010

The second billion years: HCN, HCO⁺

Most complex molecules (3 athoms) in luminous quasar APM 08279 when the universe was only 10% of its age

HCN/HCO⁺

- massive dense gas reservoirs
- HCN energetic molecule
- HCO+ reactive ion

Riechers+2010

Identification problem:

- Sulfur-bearing molecule

 N₂H⁺ ion
 Shock and Cosmic Ray ionisation
 BOTH possible
 since we have fast
 molecular outflows there

The second billion years: HCN, HCO⁺

Most complex molecules (3 athoms) in luminous quasar APM 08279 when the universe was only 10% of its age

HCN/HCO⁺

- massive dense gas reservoirs
- HCN energetic molecule
- HCO+ reactive ion

Riechers+2010

Identification problem:

- Sulfur-bearing molecule

 N₂H⁺ ion
 Shock and Cosmic Ray ionisation
 BOTH possible
 since we have fast
 molecular outflows there

Mid age universe: PAHs

Infrared fluorecence of UV-pumped 50-100 C atoms compounds formed in stellar outflows No specific spectral signature, broad emission bands **Abundant and ubiquitous ISM component, Lock ~10% of C**

TOP-DOWN CHEMISTRY

PAHs are building blocks of ISM dust grains, mediate chemical processes

Mid age universe: PAHs

Infrared fluorecence of UV-pumped 50-100 C atoms compounds formed in stellar outflows No specific spectral signature, broad emission bands **Abundant and ubiquitous ISM component, Lock ~10% of C**

Mid age universe: PAHs

Infrared fluorecence of UV-pumped 50-100 C atoms compounds

formed in stellar outflows

No specific spectral signature, broad emission bands

Abundant and ubiquitous ISM component, Lock ~10% of C

Aromatic infrared bands at

6.2 to 11.3 micron widely detected in luminous galaxies out to z~3 less in AGN (destroyed by X-rays)

well before Earth formation

MW-like Galaxy at z~0.9 towards bright quasar PKS1830

MW-like Galaxy at z~0.9 towards bright quasar PKS1830 > 40 molecular species detected (Muller+2011,2014)

MW-like Galaxy at z~0.9 towards bright quasar PKS1830 > 40 molecular species detected (Muller+2011,2014)

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms
(OH) ^(d)	$(\mathrm{H}_2\mathrm{O})^{(h)}$	$(\mathrm{NH}_3)^{(gh)}$	CH_2NH	$\mathbf{CH}_{3}\mathbf{OH}$	$\mathbf{CH}_{3}\mathbf{NH}_{2}$
(CO) (bci)	$C_2 H^{(e)}$	H_2CO (<i>ce</i>)	$\mathrm{c} ext{-}\mathrm{C}_{3}\mathrm{H}_{2}$ $^{(e)}$	$\mathbf{CH}_{3}\mathbf{CN}$	$\mathbf{CH}_{3}\mathbf{C}_{2}\mathbf{H}$
$(CS)^{(af)}$	HCN $(aef) \triangle$	$l-C_3H$	$l-C_3H_2$		$\mathbf{CH}_{3}\mathbf{CHO}$
SiO $^{(j)}$ †	HNC $(aef) \diamond$	HNCO	H_2CCN		
NS	${ m N}_{2}{ m H}^{+~~(a)}$	$\mathbf{H}_{2}\mathbf{CS}$	$\mathbf{H}_{2}\mathbf{CCO}$		
SO	HCO^+ (aef) \bigcirc		$\mathbf{C}_{4}\mathbf{H}$		
\mathbf{SO}^+	HCO		$\mathrm{HC}_{3}\mathrm{N}^{~(ej)}$		
	\mathbf{HOC}^+				
	$({ m H}_2{ m S})^{-(f)}$				
	$\mathbf{C}_{2}\mathbf{S}$				

Muller+2011, 2014

Despite look-back time ~7 Gyr, chemical composition not wildly different from Milky Way's

Most studied but... they do not look at all like the Milky Way!

M82

Luminosity ~10-100 larger

Most studied but... they do not look at all like the Milky Way!

Forms stars at rate 1 MSun/yr

Milky Way-like

tens-hundreds MSun/yr Often Super-massive BH Superwinds

Luminosity ~10-100 larger

Today's universe: starburst galaxies

Molecular abundances to trace starburst evolution

courtesy S. Martin

Today's universe: starburst galaxies

Molecular abundances to trace starburst evolution

Fuel exhaustion - nuclear SB evolution

Today's universe: nearby active galaxies

Chemical differentiation: evolutionary stage, physical processes

Aladro+2015

Today's universe: nearby active galaxies

Chemical differentiation: evolutionary stage, physical processes

Aladro+2015

Today's universe: Cosmic Ray Ionisation

COSMIC RAYS rule chemistry in dense/obcured/UV opaque regions

N₂H⁺ probe Cosmic Ray/ X-ray ionisation and chemistry in ULIRG/AGN NGC1068

NOEMA map by Ceccarelli in prep.

Today's universe: Cosmic Ray Ionisation

COSMIC RAYS rule chemistry in dense/obcured/UV opaque regions

N₂H⁺ probe Cosmic Ray/ X-ray ionisation and chemistry in ULIRG/AGN NGC1068

NOEMA map by Ceccarelli in prep.

Summary

- Exploration of chemical complexity at early cosmic epochs started...
 - Complex molecules likely present
 - News expected from ALMA, NOEMA, EVLA
 - Species identification problem
- Learning of extragal ISM physics from COM chemistry started
 - nature of gas not significantly different from MW
 - new tools/diagnostics being tested/developed
 - tighter synergy astrophysicist/cosmologist, chemistry/astro
- Need theoretical models, predictions to interpret observed complexity
 - Angular resolution is key element, but limited compared to MW
 - Need to adapt diagnostics/techniques to galaxy wide environment